• Title/Summary/Keyword: perpendicularity error

Search Result 4, Processing Time 0.018 seconds

An Effect on the Running Accuracy of the Perpendicularity Error in the Spindle System Supported with Externally-Pressurized Air Bearing (외부가압 공기 베어링 지지 스핀들 시스템에서 직각도 오차가 운전 정밀도에 미치는 영향)

  • 고정석;김경웅
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 1999
  • Recently as electronics and semi-conductor industry develop, ultra-precision machine tools that use air-spindle with externally pressurized air bearing appear in need of ultra-precision products which demand high precision property. Effects of air compressibility absorbs the vibration of shaft, this is called averaging effect, however, the higher running accuracy is demanded by degrees, the more important factor is machining errors that affect running accuracy of shaft. Actually, it would be very important in the view points of running accuracy to understand effects of machining errors on the running accuracy of the spindle system quantitatively to design and manufacture precision spindle system in the aspect that efficiency in manufacturing spindle system and performance in operation. So fu, there are some researches on the effects that machining error affect running accuracy. However, because these researches deal with one bearing of spindle system, these results aren't enough to explain how much machining errors affect running accuracy in the typical spindle system overall. In this study, we investigate the effects of the perpendicularity error of bearing and shaft on running accuracy of spindle system that consists of journal and thrust bearing theoretically, and suggest design guideline about shape tolerances.

A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers (Machining Center의 2차원 원호보간정밀도 진단 System의 개발)

  • Kim, Jeong-Soon;Namgung, Suk;Tsutusmi, Masacmi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

A Study on the Characteristics of an Externally Pressurized Conical Gas Bearing (외부가압 원추형 공기베어링의 특성에 관한 연구)

  • 박상신;한동철
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.35-39
    • /
    • 1991
  • The performance of the ultra-precision machine tools depends on the steady state characteristics of the main spindle bearings. For excluding the effect of machining error with perpendicularity, conical or spherical bearing has been used. In this paper, steady analysis of the externally pressurized conical gas bearing for ultraprecision is carried out based on the direct numerical method with assumption of point source. As a result of theoretical analysis, design parameters for optimal condition of conical gas bearing are' presented in dimensionless form.

Dynamic Characteristics of an Externally Pressurized Conical Gas Bearing (외부가압 원추형 공기 베어링의 동특성에 관한 연구)

  • 박상신;김우정;김종원;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.78-83
    • /
    • 1992
  • For excluding the effect of machining error such as perpendicularity, conical and spherical bearing has been used. In this paper, dynamic characteristics of the externally pressurized conical gas bearing for untraprecision main spindle is carried out based on the direct numerical method with assumption of point source. As a result of theoretical analysis, it is verified that coupled stiffness and damping exist and new design parameters for optimal condition of conical gas bearing are presented in dimensionless form.