• Title/Summary/Keyword: peroxisome proliferator-activated receptor-$\gamma2$

Search Result 225, Processing Time 0.034 seconds

HO-1 Induced by Cilostazol Protects Against TNF-${\alpha}$-associated Cytotoxicity via a PPAR-${\gamma}$-dependent Pathway in Human Endothelial Cells

  • Park, So-Youn;Bae, Jin-Ung;Hong, Ki-Whan;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovial cells. Thus, the present study was undertaken to examine whether cilostazol is able to counteract tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced cell death in endothelial cells via the induction of HO-1 expression. We exposed human umbilical vein endothelial cells (HUVECs) to TNF-${\alpha}$ (50 ng/ml), with or without cilostazol ($10{\mu}M$). Pretreatment with cilostazol markedly reduced TNF-${\alpha}$-induced viability loss in the HUVECs, which was reversed by zinc protoporphyrine IX (ZnPP), an inhibitor of HO-1. Moreover, cilostazol increased HO-1 protein and mRNA expression. Cilostazol-induced HO-1 induction was markedly attenuated not only by ZnPP but also by copper-protoporphyrin IX (CuPP). In an assay measuring peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) transcription activity, cilostazol directly increased PPAR-${\gamma}$ transcriptional activity which was completely abolished by HO-1 inhibitor. Furthermore, increased PPAR-${\gamma}$ activity by cilostazol and rosiglitazone was completely abolished in cells transfected with HO-1 siRNA. Taken together, these results indicate that cilostazol up-regulates HO-1 and protects cells against TNF-${\alpha}$-induced endothelial cytotoxicity via a PPAR-${\gamma}$-dependent pathway.

Analysis of UCP1 Expression in Rainbow Trout Gonadal Cell Line RTG-2 Indicates its Marginal Response to Adipogenic Inducers Compared to Mammalian Cell Lines

  • Sang-Eun Nam;Young-Joo Yun;Jae-Sung Rhee;Hyoung Sook Park
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.186-189
    • /
    • 2023
  • Uncoupling protein 1 (UCP1) is a unique mitochondrial membranous protein expressed in brown adipose tissue (BAT) in mammals. While its expression in response to cold temperatures and adipogenic inducers is well-characterized in mammals and human infants, the molecular characterization and expression of UCP1 in fish remain unexplored. To address this gap, we analyzed UCP1 expression in response to adipogenic inducers in a fish cell line, rainbow trout gonadal cells (RTG-2), and compared it with UCP1 expression in three mammalian preadipocytes, 3T3-L1, T37i, and WT1 exposed to the Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, rosiglitazone (Rosi). In mammalian preadipocytes, UCP1 protein was highly expressed by Rosi, with an induction of adipogenesis observed in a time-dependent manner. This suggests that UCP1 plays a significant role in adipogenesis in mammals. However, RTG-2 cells showed no response to adipogenic inducers and exhibited only marginal expressions of UCP1. These results imply that RTG-2 cells may lack crucial responsive mechanisms to adipogenic signals or that the adipogenic response is regulated by other mechanisms. Further studies are needed to confirm these phenomena in fish preadipocytes when an appropriate cell line is established in future research.

Nelumbo nucifera Leaf Extract Regulates Lipid Metabolism and Differentiation in 3T3-L1 Adipocytes and db/db Mice

  • Chul-Min Park;Oh Jin Min;Min-Seok Kim;Bhesh Raj Sharma;Dong Wook Kim;Dong Young Rhyu
    • Natural Product Sciences
    • /
    • v.28 no.4
    • /
    • pp.161-167
    • /
    • 2022
  • Obesity is a complex metabolic disorder that increases the risk for type 2 diabetes, hyperlipidemia, hypertension, and atherosclerosis. In this study, we evaluated the anti-obesity effects of Nelumbo nucifera leaf (NL) extract in 3T3-L1 adipocytes and obese db/db mice. NL extract among various parts (leaf, seed, and root) of N. nucifera most effectively reduced adipogenesis via inhibiting CCAAT enhancer binding protein α (C/EBPα) and peroxisome proliferator activated receptor γ (PPARγ) expression in 3T3-L1 adipocytes. The addition of NL extract enhanced the protein expression of uncoupling protein 2 (UCP2) as compared to untreated 3T3-L1 adipocytes. The oral administration of NL extract (100 mg/kg BW) significantly reduced food efficacy ratio, body weight, and face or total cholesterol level in obese db /db mice. Also, administration of NL extract significantly decreased adipocyte size and C/EBPα or PPARγ expression in the adipose tissues as compared with control (obese db/db mice). Therefore, our results suggest that NL extract among various parts of N. nucifera could be used as a functional food ingredient for the prevention and treatment of metabolic diseases including obesity and diabetes.

Anti-adipogenic activity of Smilax sieboldii extracts in 3T3-L1 adipocytes (3T3-L1 지방전구세포에서 청가시덩굴 추출물의 항비만 활성)

  • Seohyun Park;Jung A Lee;Seong Su Hong;Eun-Kyung Ahn
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.369-378
    • /
    • 2023
  • Smilax sieboldii is one of the Smilax species. A number of Smilax plants have multiple physiologically-active components and anti-inflammatory/anti-oxidant effects. Antiobesity effects induced by Smilax sieboldii have not been reported. In this study, we investigated the effects and molecular mechanisms of anti-obesity activity of 70% ethanol Smilax sieboldii extract (SSE). The anti-obesity effect of SSE was determined using 3T3-L1 adipocytes. We confirmed that SSE was not cytotoxic to murine 3T3-L1 preadipocytes, we evaluated SSE dose-dependently decreased the accumulation of lipids via an Oil Red O assay and triglyceride assay. These anti-obesity activities of SSE were mediated by the inhibition of adipogenesis-related marker genes (peroxisome proliferator activated receptor-γ, CCAAT-enhancer-binding protein α, and SREBP1c) and lipogenesis-related marker genes (fatty acid synthase and aP2). These results suggest that SSE has the potential to exert anti-obesity and anti-hyperlipidemia effects by regulating adipogenic transcription factors and inhibiting the expression of adipogenic markers.

Galangin Suppresses Pro-Inflammatory Gene Expression in Polyinosinic-Polycytidylic Acid-Stimulated Microglial Cells

  • Choi, Min-Ji;Park, Jin-Sun;Park, Jung-Eun;Kim, Han Su;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.641-647
    • /
    • 2017
  • Galangin (3,5,7-trihydroxyflavone) is a polyphenolic compound abundant in honey and medicinal herbs, such as Alpinia officinarum. In this study, we investigated the anti-inflammatory effects of galangin under in vitro and in vivo neuroinflammatory conditions caused by polyinosinic-polycytidylic acid (poly(I:C)), a viral mimic dsRNA analog. Galangin suppressed the production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in poly(I:C)-stimulated BV2 microglia. On the other hand, galangin enhanced anti-inflammatory interleukin (IL)-10 production. Galangin also suppressed the expression of pro-inflammatory markers in poly(I:C)-injected mouse brains. Further mechanistic studies showed that galangin inhibited poly(I:C)-induced nuclear factor (NF)-${\kappa}B$ activity and phosphorylation of Akt without affecting MAP kinases. Interestingly, galangin increased the expression and transcriptional activity of peroxisome proliferator-activated receptor (PPAR)-${\gamma}$, known to play an anti-inflammatory role. To investigate whether PPAR-${\gamma}$ is involved in the anti-inflammatory function of galangin, BV2 cells were pre-treated with PPAR-${\gamma}$ antagonist before treatment of galangin. We found that PPAR-${\gamma}$ antagonist significantly blocked galangin-mediated upregulation of IL-10 and attenuated the inhibition of tumor necrosis factor (TNF)-${\alpha}$ and IL-6 in poly(I:C)-stimulated microglia. In conclusion, our data suggest that PI3K/Akt, NF-${\kappa}B$, and PPAR-${\gamma}$ play a pivotal role in mediating the anti-inflammatory effects of galangin in poly(I:C)-stimulated microglia.

Cellular Effects of Troglitazone on YD15 Tongue Carcinoma Cells

  • Loan, Ta Thi;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.113-118
    • /
    • 2016
  • An FDA approved drug for the treatment of type II diabetes, Troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist, is withdrawn due to severe idiosyncratic hepatotoxicity. In the search for new applications of TRO, we investigated the cellular effects of TRO on YD15 tongue carcinoma cells. TRO suppressed the growth of YD15 cells in the MTT assay. The inhibition of cell growth was accompanied by the induction of cell cycle arrest at $G_0/G_1$ and apoptosis, which are confirmed by flow cytometry and western blotting. TRO also suppressed the expression of cell cycle proteins such as cyclin D1, cdk2, cdk4, cyclin B1, cdk1(or cdc2), cyclin E1 and cyclin A. The inhibition of cell cycle proteins was coincident with the up-regulation of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$. In addition, TRO induces the activation of caspase-3 and caspase-7, as well as the cleavage of PARP. Further, TRO suppressed the expressions of Bcl-2 without affecting the expressions of Bad and Bax. Overall, our data supports that TRO induces cell cycle arrest and apoptosis on YD15 cells.

The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

  • Suzuki, Y.;Hong, Y.H.;Song, S.H.;Ardiyanti, A.;Kato, D.;So, K.H.;Katoh, K.;Roh, Sang-Gun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1316-1321
    • /
    • 2012
  • Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiated adipocytes treated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), adiponectin, leptin, and chemerin (peptide analog). The expression levels of the chemerin gene increased at d 6 and 12 of the differentiation period accompanied by increased cytoplasm lipid droplets. From d 6 onward, peroxisome proliferator-activated receptor-${\gamma}2$ (PPAR-${\gamma}2$) gene expression levels were significantly higher than that of d 0 and 3. In contrast, CMKLR1 expression levels decreased at the end of the differentiation period. In fully differentiated adipocytes (i.e. at d 12), the treatment of TNF-${\alpha}$ and adiponectin upregulated both chemerin and CMKLR1 gene expression levels, although leptin did not show such effects. Moreover, chemerin analog treatment was shown to upregulate chemerin gene expression levels regardless of doses. These results suggest that the expression of chemerin in bovine adipocyte might be regulated by chemerin itself and other adipokines, which indicates its possible role in modulating the adipokine secretions in adipose tissues.

Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells

  • Ghosh, Chiranjit;Yang, Seung Hak;Kim, Jong Geun;Jeon, Tae-Il;Yoon, Byung Hyun;Lee, Jai Young;Lee, Eun Young;Choi, Seok Geun;Hwang, Seong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1189-1196
    • /
    • 2013
  • Adipose tissue development and function play a critical role in the regulation of energy balance, lipid metabolism, and the pathophysiology of metabolic syndromes. Although the effect of zinc ascorbate supplementation in diabetes or glycemic control is known in humans, the underlying mechanism is not well described. Here, we investigated the effect of a zinc-chelated vitamin C (ZnC) compound on the adipogenic differentiation of 3T3-L1 preadipocytes. Treatment with ZnC for 8 d significantly promoted adipogenesis, which was characterized by increased glycerol-3-phosphate dehydrogenase activity and intracellular lipid accumulation in 3T3-L1 cells. Meanwhile, ZnC induced a pronounced up-regulation of the expression of glucose transporter type 4 (GLUT4) and the adipocyte-specific gene adipocyte protein 2 (aP2). Analysis of mRNA and protein levels further showed that ZnC increased the sequential expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha (C/$EBP{\alpha}$), the key transcription factors of adipogenesis. These results indicate that ZnC could promote adipogenesis through $PPAR{\gamma}$ and C/$EBP{\alpha}$, which act synergistically for the expression of aP2 and GLUT4, leading to the generation of insulin-responsive adipocytes and can thereby be useful as a novel therapeutic agent for the management of diabetes and related metabolic disorders.

The Study on Anti-obesity Effects of Mulberry Leaves Contained Herbal Mixture (상엽(桑葉) 함유 한약복합제 추출물의 항비만(抗肥滿)효과 연구)

  • Park, Jong Ik;Kang, Kyung Ha;Park, Eun Jung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.17-30
    • /
    • 2013
  • Objectives This experimental study was designed to investigate the effects of Mulberry leaves contained herbal mixture (MLHM) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Methods Four-week old mice (wild-type C57/BL6) were used for all experiments. Cells were incubated with MLHM at the indicated concentration (0.04-4mg/ml) for 24h, and growth rate was assessed by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 3T3-L1 preadipocytes were incubated in DMEM for 2 days with the indicated concentrations of MLHM, and on Day 6, the cells were fixed and the cellular lipid contents were assessed by Oil-Red-O staining. The expression of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$) as adipocyte-specific proteins were determined by real time RT-PCR and western blotting. In addition, body weight gain and serum lipid levels were measured in the mice with obesity induced by the high fat-diet for four weeks. Results Though MLHM did not show toxicity even at the concentration of 4mg/ml, MLHM significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner. Also, MLHM significantly reduced the expressions of PPAR ${\gamma}$ and C/EBP ${\alpha}$ in a dose-dependent manner. Furthermore, MLHM significantly reduced body weight gain and LDL-cholesterol contents in high fat diet-fed obese mice. Conclusions These results demonstrate that MLHM exerts anti-obesity effect in 3T3-L1 cells and mice with obesity by high-fat diet.

High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity

  • Jung, Sunyoon;Lee, Mak-Soon;Shin, Yoonjin;Kim, Chong-Tai;Kim, In-Hwan;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-${\alpha}$, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression.