• 제목/요약/키워드: peroxide reductase

검색결과 100건 처리시간 0.025초

Augmentation of antioxidant system: Contribution to antimalarial activity of Clerodendrum violaceum leaf extract

  • Balogun, Elizabeth Abidemi;Zailani, Ahmed Hauwa;Adebayo, Joseph Oluwatope
    • 셀메드
    • /
    • 제4권4호
    • /
    • pp.26.1-26.9
    • /
    • 2014
  • Reactive oxygen species are known to mediate various pathological conditions associated with malaria. In this study, the antioxidant potential of Clerodendrum violaceum leaf extracts, an indigenous antimalarial remedy, was evaluated. Total phenol, flavonoid, selenium, vitamins C and E contents of Clerodendrum violaceum leaf extracts were determined. The free radical scavenging activities of the extracts against DPPH, superoxide anion and hydrogen peroxide coupled with their reducing power were also evaluated in vitro. Moreover, responses of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in a rodent malaria model to a 4-day administration of Clerodendrum violaceum leaf extracts were also evaluated. The methanolic extract was found to contain the highest amounts of antioxidant compounds/element and also demonstrated the highest free radical scavenging activity in vitro. The results showed a significant decrease (p < 0.05) in SOD and CAT activities with a concurrent significant (p < 0.05) increase in GPx and GR activities in both erythrocytes and liver of untreated Plasmodium berghei NK65-infected animals compared to the uninfected animals. The extracts were able to significantly increase (p < 0.05) SOD and CAT activities and significantly reduce (p < 0.05) GPx and GR activities in both the liver and erythrocytes compared to those observed in the untreated infected animals. The results suggest the augmentation of the antioxidant system as one of the possible mechanisms by which Clerodendrum violaceum extract ameliorates secondary effects of malaria infection, alongside its antiplasmodial effect in subjects.

숙지황(熟地黃)과 육미지황탕(六味地黃湯)이 노화과정(老化過程) 흰쥐에서의 항산화(抗酸化) 기전(機轉)에 미치는 영향(影響) (A study on the Effects of Rehmannia Radix and Eukmigihwangtang (EMGHT) on Antioxidation Activity in Aging Rats)

  • 안상원;이철완
    • 혜화의학회지
    • /
    • 제8권1호
    • /
    • pp.593-623
    • /
    • 1999
  • This experimental study was designed to verify the anti-aging efficacy of Eukmigihwangtang (EMGHT) and Rehmannia Radix, and determine the specific role and actions of Rehmannia Radix. Normal rat (2 months old), aging rat (8 months old), and pathologically induced rat (2 months old, injected 30mg/kg of streptozotocin) are observed to study the aging eliciting factors such as peroxide contents and enzyme activities. The following results were obtained in this study: 1. For the body weight changes, normal group given Rehmannia Radix showed decrease in the body weight compared to the control group, aging group given EMGHT and Rehmannia Radix showed significant decrease in the body weight, and STZ injected group showed suppression to the body weight loss when given EMGHT and Rehmannia Radix. 2. For the content changes in serum lipid peroxide, normal group showed increasing level as the rat gets older. Aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the lipid peroxide level compared to the control group. Decrease was more prominant in the group given EMGHT. 3. For the changes in serum hydroxyl radical, normal group did not show significant changes, but aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the hydroxyl radical level compared to the control group. Decrease was more prominant in the group given EMGHT. 4. For the changes in serum superoxide dismutase (SOD) activity, normal group did not show significant changes, but aging group given EMGHT and Rehmannia Radix showed significant increase in the SOD activity compared to the control group. STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the SOD activity compared to the control group. 5. For the content changes in hepatic lipid peroxide, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease in the lipid peroxide level compared to the control group. 6. For the changes in hepatic cytochrome P-450 activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease compared to the control group. Cytochrome b5 activity was significantly decreased only in the STZ injected group given EMGHT and Rehmannia Radix. 7. For the changes in hepatic aminopyrine demethylase and aniline hydroxylase activity, aging group given EMGHT and Rehmannia Radix showed significant decrease compared to the control group. STZ injected group given EMGHT and Rehmannia Radix showed significant increase in the aminopyrine demethylase activity, and showed significant decrease in the aniline hydroxylase activity compared to the control group. 8. For the content changes in hepatic protein bound-SH and nonprotein bound-SH, againg group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase compared to the control group. 9. For the content changes in hepatic glutathione level, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase compared to the control group. 10. For the changes in hepatic glutathione S-transferase activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase and decrease, respectively, compared to the control group. 11. For the changes in hepatic glutathione reductase activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant increase compared to the control group, while $\gamma$-Glutamylcystein synthetase activity did not show significant changes. 12. For the changes in hepatic superoxide dismutase activity, aging group and STZ injected group given EMGHT and Rehmannia Radix showed significant decrease compared to the control group. From the above results, the antioxidant effects of EMGHT and Rehmannia Radix were proved, as well as the role of Rehmannia Radix, a chief of EMGHT, was examined. In addition, since no change was reconized as the quantity of Rehmannia Radix and the order herbs increased, the reasonableness on EMGHT was proven with respect to its composition and quantity. Thus, the significance of EMGHT could be objectively exmined in terms of its composition and quantity. Considering animals used in the experiment, there were obvious changes in aging rats and pathologically induced rats than in normal rats. Consequently, it was noticeable that EMGHT and Rehmannia Radix were working selectively on the subjects.

  • PDF

노쇠중인 밀 잎에서 scorbate-Glutathione회로 관계 효소의 발달에 대한 Benzyladenine의 효과

  • 장창덕
    • Journal of Plant Biology
    • /
    • 제38권1호
    • /
    • pp.47-54
    • /
    • 1995
  • 본 연구는 $H_2O_2$ 축적이 수반되는 잎의 노쇠현상과 관련하여 세포질내 ascorbate-glutathione 회로의 역할 가능성과 이때 benzyladenine(BA)의 효과를 밝히기 위하여 노쇠중인 밀 잎에서 시토졸 ascorbate peroxidase(APX) isozyme 분리 및 발달양상과 ascorbate-glutathione 회로 구성효소들의 활성도 변화를 조사하였다. 성숙한 밀 제1엽 절편을 4일간 암배양하는 동안 증가된 엽록소 분해 및 $H_2O_2$ 축적으로 규정되는 잎의 노쇠발달중 대조구 잎에서는 시토졸 APX 활성도의 유의성 있는 증가가 관찰되지 않았으며 dehydroascorbate reductase(DHAR)의 활성도는 급격히 감소되었고, glutathione reductase(GR) 활성도는 완만하게 증가하였다. 그러나 BA로 처리된 잎에서는 시토졸 APX 활성도가 현저하게 증가하였으며 DHAR 활성도의 감소가 지연되어 나타났고 GR 활성도의 증가는 대조구에 비해 증진되었으며 내재성 ascorbate 함량의 감소율과 H2O2 축적이 억제되었다. 3개의 시토졸 APX isozyme이 native-PAGE법에 의해 노쇠중인 밀 잎에서 발견되었으며 그 중 2개 isozyme은 높은 활성도를 보였다. 시토졸 APX isozyme의 발달양상의 경우 4일간의 암배양 동안 대조구 잎에서는 단지 2개의 isozyme band("a"와 "b")가 거의 같은 활성도를 지닌 채 출현하였으나 BA로 처리된 잎에서는 추가로 1개의 약한 isozyme band("c")가 더 나타났으며 "b" isozyme의 활성도가 약간 촉진되었다 그러나 "a" isozyme 활성도는 대조구 잎에 비해 암배양시간 경과에 따라 현저하게 발달하였다. 대조구 잎과 비교시 BA로 처리된 잎에서는 시토졸 APX isozyme의 발달 및 APX, DHAR, GR의 전체 활성도가 함께 증진되어 그 결과 $H_2O_2$ 제거능력이 증대된 본 실험의 결과는 ascorbate-glutathione 회로가 밀 잎의 노쇠과정에 중요하게 작용하고 있음을 제시하였다.

  • PDF

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Computational Optimization of Bioanalytical Parameters for the Evaluation of the Toxicity of the Phytomarker 1,4 Napthoquinone and its Metabolite 1,2,4-trihydroxynapththalene

  • Gopal, Velmani;AL Rashid, Mohammad Harun;Majumder, Sayani;Maiti, Partha Pratim;Mandal, Subhash C
    • 대한약침학회지
    • /
    • 제18권2호
    • /
    • pp.7-18
    • /
    • 2015
  • Objectives: Lawsone (1,4 naphthoquinone) is a non redox cycling compound that can be catalyzed by DT diaphorase (DTD) into 1,2,4-trihydroxynaphthalene (THN), which can generate reactive oxygen species by auto oxidation. The purpose of this study was to evaluate the toxicity of the phytomarker 1,4 naphthoquinone and its metabolite THN by using the molecular docking program AutoDock 4. Methods: The 3D structure of ligands such as hydrogen peroxide ($H_2O_2$), nitric oxide synthase (NOS), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) were drawn using hyperchem drawing tools and minimizing the energy of all pdb files with the help of hyperchem by $MM^+$ followed by a semi-empirical (PM3) method. The docking process was studied with ligand molecules to identify suitable dockings at protein binding sites through annealing and genetic simulation algorithms. The program auto dock tools (ADT) was released as an extension suite to the python molecular viewer used to prepare proteins and ligands. Grids centered on active sites were obtained with spacings of $54{\times}55{\times}56$, and a grid spacing of 0.503 was calculated. Comparisons of Global and Local Search Methods in Drug Docking were adopted to determine parameters; a maximum number of 250,000 energy evaluations, a maximum number of generations of 27,000, and mutation and crossover rates of 0.02 and 0.8 were used. The number of docking runs was set to 10. Results: Lawsone and THN can be considered to efficiently bind with NOS, CAT, GSH, GR, G6PDH and NADPH, which has been confirmed through hydrogen bond affinity with the respective amino acids. Conclusion: Naphthoquinone derivatives of lawsone, which can be metabolized into THN by a catalyst DTD, were examined. Lawsone and THN were found to be identically potent molecules for their affinities for selected proteins.

Preventive Effects of Lycopene-Enriched Tomato Wine against Oxidative Stress in High Fat Diet-Fed Rats

  • Kim, A-Young;Jeon, Seon-Min;Jeong, Yong-Jin;Park, Yong-Bok;Jung, Un-Ju;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제16권2호
    • /
    • pp.95-103
    • /
    • 2011
  • This study was performed to investigate the antioxidant mechanism of tomato wine with varying lycopene content in rats fed a high fat diet (HFD). Male Sprague-Dawley rats were randomly divided into five groups (n=10 per group) and fed an HFD (35% of total energy from fat) plus ethanol (7.2% of total energy from alcohol), tomato wine with varying lycopene content (0.425 mg%, 1.140 mg% or 2.045 mg% lycopene) or an isocaloric control diet for 6 weeks. Mice fed HFD plus ethanol significantly increased erythrocyte hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) levels with increases in activities of erythrocyte antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) compared to pair-fed rats. Supplementation of tomato wine with varying lycopene content decreased ethanol-mediated increases of erythrocyte lipid peroxidation and antioxidant enzyme activities in HFD-fed rats, and tomato wine with higher lycopene appeared to be more effective. Tomato wine also dose-dependently lowered TBARS levels with decreased pro-oxidant enzyme, xanthine oxidase (XOD) activity in plasma of HFD-fed rats. In contrast to erythrocytes, the inhibitory effects of tomato wine on hepatic lipid peroxidation were linked to increased hepatic antioxidant enzymes (SOD and CAT) and alcohol metabolizing enzyme (alcohol dehydrogenase and aldehyde dehydrogenase) activities. There were no significant differences in hepatic XOD and cytochrome P450-2E1 activities among the groups. Together, our data suggest that tomato wine fortified with lycopene has the potential to protect against ethanol-induced oxidative stress via regulation of antioxidant or pro-oxidant enzymes and alcohol metabolizing enzyme activities in plasma, erythrocyte and liver.

Acetaminophen으로 유도한 쥐의 간 독성에 대한 미나리(Oenanthe javanica) 추출액의 간 보호 작용 (Protective Effect of Oenanthe javanica Extract on Acetaminophen-induced Hepatotoxicity in Rats)

  • 박종철;김종연;이윤주;이지선;김보금;이승호;남두현
    • 약학회지
    • /
    • 제52권4호
    • /
    • pp.316-321
    • /
    • 2008
  • The hepatoprotection by the methanol extract of Oenanthe javanica DC (water dropwort) (OJME) was investigated in Sprague Dawley rats with inducing liver damage by acetaminophen. After OJME administration for 1 week, the increase of hepatic lipid peroxide level by acetaminophen-induced hepatotoxicity was significantly reduced. In case of phase I microsomal enzyme systems including cytochrome P-450, aminopyrine N-demethylase and aniline hydroxylase, any significant differences between in control and in OJME-pretreated group was observed after acetaminophen treatment. However, the pretreatment of OJME maintained the hepatic glutathione level and the activity of liver cytosolic glutathione S-transferase, which was significantly decreased by the acetaminophen intoxication. Among the glutathione-generating system, glutathione reductase was more responsible for its biosynthesis rather than ${\gamma}-glutamylcystein$ synthetase. OJME itself showed the strong inhibition activity on DPPH radical generation. In conclusion, OJME administration maintains the liver glutathione pool and hepatic glutathione S-transferase activity, in addition with its high anti-oxidative capability, to show hepatoprotective effect from acetaminophen intoxication.

Hepatoprotective Effects of Paecilomyces tenuipes Against Carbon Tetrachloride-induced Toxicity in Primary Cultures of Adult Rat Hepatocytes

  • Hyun, Sun-Hee;Jeon, Tae-Won;Lee, Sang-Kyu;Kim, Chun-Hwa;Seo, Young-Min;Kim, Ju-Hyun;Jeong, He-Min;Kang, Mi-Jeong;Lee, Jae-Sung;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • 제23권4호
    • /
    • pp.301-309
    • /
    • 2007
  • Paecilomyces tenuipes (PT), one of the Ascomycetes family, has been used for medicinal purposes due to its broad pharmacological activities. The present study was undertaken to investigate the hepatoprotective effects of PT water extracts against $CCl_4$-induced hepatotoxicity in primary cultures of adult rat hepatocytes. When the extract of PT was directly added into the culture medium at 1, 2, and 5 mg/ml, the extracts not only reduce the $CCl_4$-induced elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase, and lipid peroxide, but also protect cultured hepatocytes from $CCl_4$-induced reduction of reduced glutathione, glutathione reductase, glutathione-S-transferase, glutathione peroxidase, catalase and superoxide dismutase. In addition, the effects of PT water extracts on cytochrome P450 enzymes were relatively marginal, indicating that the hepatoprotective effects of PT extract against $CCl_4$-induced toxicity might not be due to the inhibition of $CCl_4$ activation. In conclusion, the PT extracts were effective in protecting against $CCl_4$ induced hepatotoxicity in hepatocyte cultures, at least in part, by scavenging free radicals, and by modulating enzyme systems involved in cellular oxidative stress.

Effects of Calorie Restriction on Microsomal Mixed Function Oxidase System and Free Radical in Kidney of SAMP8 Mice

  • kim, Hyun-Jeong;Choi, Jin-Ho;Rhee, Soon-Jae
    • Nutritional Sciences
    • /
    • 제7권4호
    • /
    • pp.189-195
    • /
    • 2004
  • 1bis study investigated the antioxidative effect in kidney of senescence-accelerated prone SAMP8 mice with calorie restriction. 4-weeks-old SAMP8 female mice were divided into 4 groups according to the experimental feeding period: for 4, 8, 12 month, and at natural death. Each group was subdivided into 2 groups, with thirteen mice each one, as ad libitum group and as dietary restriction group (60% of ad libitum feeding amount). After feeding for a given period, the mice were sacrificed to get the following results: among the experimental groups, there wereno significant differences in xanthine oxidase (XOD) activity in their kidney tissues. The contents of cytochrome $P_{450}$ decreased in ad libitum group and dietary restriction group by age. The activity of NADPH-cytochrome $P_{450}$ reductase showed a trend similar to cytochrome $P_{450}$. Superoxide radical content increased with age. At the 4th, 8th and 12 months of the experimental period, the activity in the dietary restriction group was less than that of ad libitum group by as much as 17% 14% and 14% respectively. For hydrogen peroxide, the contents were increased in the ad libitum group with age, while no correlation between content and age was observed in the dietary restriction group. In the 8th and 12th months of the experimental period, the were in the dietary restriction group less than that of ad libitum group counterpart as much as 17% and 20o/c, respectively. For the cellular membrane stability of the kidney, no significant correlation with age was observed in either the dietary restriction group or the ad libitum group. However at the 12th month of the experiment, however, the stability in the dietary restriction group was 11 % higher than that in the ad libitum group. In conclusion, with these results obtained from the SAMP8 mouse model, we demonstrate that dietary restriction has the effects of anti-oxidation and anti-senescence in the kidney.

가자(Terminalia chebula) 추출물이 마우스의 생리활성에 미치는 영향 (Effect of Terminalia chebula on Physiological Activity in Mice)

  • 박종옥;이승은
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.148-153
    • /
    • 2004
  • 가자 추출물을 취하여 사람, 돼지, 쥐 및 개 등의 3% 적혈구용액으로 응집력시험을 행한 결과 7가지 적혈구 모두에 렉틴 활성이 나타났으며 $LD_{50}$는 390 mg/kg으로 측정되었다. 생리 활성에 대한 영향을 알아보고자 생체 내외인성 요인에 의한 친전자성 물질로 생체내에서 독작용, 노화, 발암 및 면역 억제작용을 유발하는 원인 물질인 free radical생성에 관여하는 효소인 XO 및 AO의 활성을 측정 한 결과, XO 에서는 일주일간 매일 300 mg/kg의 용량으로 가자 추출물을 투여한 군이 정상군보다 5배 증가되는 결과를 나타내었고 AO에서는 정상군보다 시료 투여군이 2배 증가되는 결과를 나타내었다 glutathione은 단백질이나 DNA합성, amino acid의 이동 반응 및 thiol기의 저장 등과 같은 생물학적으로 중요한 여러 가지 반응에 직접 관여하는 물질이다[16〕. 이에 간장 조직의 glutathione농도를 측정한 결과 간장 독성의 유발로 인한 효소 활성은 정상군에 비하여 1주간 매일 300 mg/kg의 용량으로 시료 투여한 군의 효소 활성이 79% 감소됨을 볼 수 있었다. 체내의 여러 가지 해독반응과정에 관여하는 GST효소활성을 측정 한 결과 정상군에 비해 1주간 매 일 300 mg/kg의 용량으로 시료 투여한 군이 66%정도 감소된다는 결과를 볼 수 있었다. glutathione 합성에 관여하는 $\gamma$-GCS의 활성과 산화형 glutathione을 환원형 glutathione으로 환원시키는 GR의 활성을 관찰한 결과 가자 추출물 투여군이 정상군보다 GR의 활성은 80% 감소되었고, 합성에 관여하는 $\gamma$-GCS의 활성은 정상군과 비교할 때 약간의 감소만을 나타내 glutathione함량 변동에 크게 영향을 미치지 않는 것으로 생각된다.