• 제목/요약/키워드: peroxidase-like activity

검색결과 49건 처리시간 0.029초

광바이오센서용 효소를 함유한 PEG 수화젤 나노입자의 합성 (Synthesis of Enzyme-Containing PEG Hydrogel Nanospheres for Optical Biosensors)

  • 김범상
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.613-616
    • /
    • 2005
  • 본 연구에서는 한 개의 세포와 같은 미세한 생체시료 내부의 분석 대상물질을 감지하는데 사용할 수 있는 광바이오센서를 개발하기 위한 첫 단계로서 효소가 함유된 고분자 수화젤 구형입자를 나노크기로 중합하는 방법을 확립하고 센서로서의 사용 가능성을 확인하였다. 현탁 광중합을 통하여 305 nm의 평균크기를 가지는 horseradish peroxidase(HRP)가 함유된poly(ethylene glycol)(PEG) 수화젤 구형입자를 합성하였으며, 중합반응 이후 입자내부의 효소의 존재 및 활성유지를 HRP와$\H_{2}O_{2}$의 효소반응에 의한 Amplex Red의 형광산화물 생성을 통하여 확인하였다. 합성된 HRP가 함유된 PEG 수화젤 입자는 Amplex Red의 존재하에 $\H_{2}O_{2}$의 농도가 0에서 11 nM로 미량 변화함에 따라서 형광세기가 약 300$\%$ 증가함을 보여 주었다. 이러한 결과는 효소가 함유된 PEG 수화젤 나노입자를 합성하는 본 기술이 향후 미세한 생체시료 내부의 다양한 분석대상물질을 감지할 수 있는 나노크기의 광바이오센서를 개발하는데 이용 될 수 있는 가능성을 보여준다.

햄스터 난소세포에서 Daidzein과 Genistein에 의해 유도된 산화적 스트레스에 대한 Vitamin C의 효과 (Effect of Vitamin C on Oxidative Stress Induced by Daidzein and Genistein in Hamster Ovary Cells)

  • 김민혜;김안근
    • 약학회지
    • /
    • 제51권4호
    • /
    • pp.285-290
    • /
    • 2007
  • The oxidative stress causes many diseases like cancer, aging, cardiovascular disease, degenerative neurological disorders (Parkinson’s disease, and Alzheimer's disease) by damage of cell membrane, protein deformation, and damage of DNA due to the oxidation of lipid of cell membrane, protein of tissue or enzyme, carbohydrate, and DNA. It is caused by the reactive oxygen species (ROS) that is produced in the metabolic process of oxygen in cell. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cell systemize the antioxidative enzymes to control the oxidative stress. In this research, it is measured that the survival rate of cell by the typical isoflavonoid of daidzein or genistein, activity of antioxidative enzyme, and ROS level, in order to study the effect of isoflavonoid over the ROS production in cell and antioxidative system. As the similar action of the isoflavonoid with the estrogen is examined, women are encouraged to get bean. In view of this trend, it is very important to find out a combination medicine that lowers the oxidative stress caused by the daidzein in the ovarian cell. In the combined treatment of the typical antioxidant of vitamin C to oxidative stress which induced by daidzein recover the control level particularly lowering the ROS in cell by 30%. However, it made no effect in the combined treatment with genistein. Therefore, the research took the combination effect of daidzein with vitamin C in order to check it effect over the antioxidative system. In conclusion, it was disclosed that the oxidative stress caused by daidzein is related to the lowering activity of SOD, and the specific combination effect of daidzein with vitamin C is related to the recovery of SOD activity.

Selection and Characterization of Forest Soil Metagenome Genes Encoding Lipolytic Enzymes

  • Hong, Kyung-Sik;Lim, He-Kyoung;Chung, Eu-Jin;Park, Eun-Jin;Lee, Myung-Hwan;Kim, Jin-Cheol;Cho, Gyung-Ja;Cho, Kwang-Yun;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1655-1660
    • /
    • 2007
  • A metagenome is a unique resource to search for novel microbial enzymes from the unculturable microorganisms in soil. A forest soil metagenomic library using a fosmid and soil microbial DNA from Gwangneung forest, Korea, was constructed in Escherichia coli and screened to select lipolytic genes. A total of seven unique lipolytic clones were selected by screening of the 31,000-member forest soil metagenome library based on tributyrin hydrolysis. The ORFs for lipolytic activity were subcloned in a high copy number plasmid by screening the secondary shortgun libraries from the seven clones. Since the lipolytic enzymes were well secreted in E. coli into the culture broth, the lipolytic activity of the subclones was confirmed by the hydrolysis of p-nitrophenyl butyrate using culture supernatant. Deduced amino acid sequence analysis of the identified ORFs for lipolytic activity revealed that 4 genes encode hormone-sensitive lipase (HSL) in lipase family IV. Phylogenetic analysis indicated that 4 proteins were clustered with HSL in the database and other metagenomic HSLs. The other 2 genes and 1 gene encode non-heme peroxidase-like enzymes of lipase family V and a GDSL family esterase/lipase in family II, respectively. The gene for the GDSL enzyme is the first description of the enzyme from metagenomic screening.

Hepatoprotective and antioxidant effects of Monochoria vaginalis against acetaminophen-induced hepatotoxicity in rats

  • Palani, S.;Raja, S.;Sakthivel, K.;Devi, K.;Kumar, B. Senthil
    • Advances in Traditional Medicine
    • /
    • 제10권1호
    • /
    • pp.29-36
    • /
    • 2010
  • The present study was aimed to investigate the hepatoprotective and antioxidant activities of ethanol extract from Monochoria vaginalis (250 mg/kg and 500 mg/kg B/W) on acetaminophen (APAP) induced rat hepatic injury. Monochoria vaginalis is a traditional medicinal plant that is commonly used to treat and improve liver conditions in India and other Asian countries. The development of hepatotoxicity induced by APAP is promoted by oxidative stress. APAP treated group significantly (P < 0.01) elevated the serum enzymatic levels like glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase (SALP), total bilirubin and malondialdehyde (MDA), which were restored towards normalization significantly (P < 0.01) thanol extract of yonochoria vagin is (EEMV). In addition, the EEMV significantly (P < 0.01) elevated the decreased level of total protein and antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase and reduced glutathione. Apart from these, histopathological changes also showed the protective nature of the EEMV against APAP induced hepatic damage in liver tissues. The activity of EEMV at 500 mg/kg B/W was comparable to the standard drug silymarin (25 mg/kg B/W). In conclusion, these data suggest that the EEMV possess hepatoprotective and antioxidant effects against APAP-induced hepatotoxicity and oxidative stress in rats.

Zearalenone regulates key factors of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling pathway in duodenum of post-weaning gilts

  • Cheng, Qun;Jiang, Shu zhen;Huang, Li bo;Yang, Wei ren;Yang, Zai bin
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1403-1414
    • /
    • 2021
  • Objective: This study explored the mechanism of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway under conditions of zearalenone (ZEA)-induced oxidative stress in the duodenum of post-weaning gilts. Methods: Forty post-weaning gilts were randomly allocated to four groups and fed diets supplemented with 0, 0.5, 1.0, or 1.5 mg/kg ZEA. Results: The results showed significant reductions in the activity of the antioxidant enzymes total superoxide dismutase and glutathione peroxidase and increases the malondialdehyde content with increasing concentrations of dietary ZEA. Immunohistochemical analysis supported these findings by showing a significantly increased expression of Nrf2 and glutathione peroxidase 1 (GPX1) with increasing concentrations of ZEA. The relative mRNA and protein expression of Nrf2, GPX1 increased linearly (p<0.05) and quadratically (p<0.05), which was consistent with the immunohistochemical results. The relative mRNA expression of Keap1 decreased linearly (p<0.05) and quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet. The relative mRNA expression of modifier subunit of glutamate-cysteine ligase (GCLM) increased quadratically (p<0.05) in all ZEA treatment groups and the relative mRNA expression of quinone oxidoreductase 1 (NQO1) catalytic subunit of glutamate-cysteine ligase decreased linearly (p<0.05) and quadratically (p<0.05) in the ZEA1.0 group and ZEA1.5 group. The relative protein expression of Keap1 and GCLM decreased quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet, respectively. The relative protein expression of NQO1 increased linearly (p<0.05) and quadratically (p<0.05) in all ZEA treatment groups in the duodenum. Conclusion: These findings suggest that ZEA regulates the expression of key factors of the Keap1-Nrf2 signaling pathway in the duodenum, which enables resistance to ZEA-induced oxidative stress. Further studies are needed to examine the effects of ZEA induced oxidative stress on other tissues and organs in post-weaning gilts.

Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet

  • Ha, Ae Wha;Na, Se Jung;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • 제7권6호
    • /
    • pp.475-480
    • /
    • 2013
  • The purpose of this study was to determine the antioxidant effect of fucoxanthin. After rats were fed a normal fat diet (NF), high fat diet (HF), and high fat with 0.2% fucoxanthin diet (HF + Fxn) for 4 weeks, the markers of oxidative stress and antioxidant capacity like lipid peroxidation, plasma total antioxidant capacity (TAC), and activities of antioxidant enzymes (catalase, superoxide dismutase (SOD), and gluthathione peroxidase (GSH-Px)) were determined. mRNA expression of transcription factor, nuclear erythroid factor like 2 (Nrf2), and its target genes such as NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase-1 (HO-1) were also determined. Mean weight gain in the HF + Fxn group was lower, without statistical significance, and the total food intake in the HF + Fxn group was lower than that in the HF group (P < 0.05). The activity of GSH-Px (P < 0.05) in plasma was significantly higher in the HF + Fxn group than those in the HF group (P < 0.05). In the liver, the activities of catalase (P < 0.05) and GSH-Px (P < 0.05) in the HF + Fxn group were significantly higher than those in the HF group. Plasma TAC level was significantly higher in the HF + Fxn group than that in the HF group (P < 0.05). Lipid peroxidation in plasma tended to be lower without statistical significance. Fucoxanthin supplements were shown to have higher mRNA expression of Nrf2 and NQO1 than those in the high fat diet only group (P < 0.05). In conclusion, supplementation of fucoxanthin improved the antioxidant capacity, depleted by high fat diet, by activating the Nrf2 pathway and its downstream target gene NQO1. Therefore, supplementation of fucoxanthin, especially for those who consume high fat in their diet, may benefit from reduced risk of oxidative stress.

Effect of methyl donors supplementation on performance, immune responses and anti-oxidant variables in broiler chicken fed diet without supplemental methionine

  • Savaram, Venkata Rama Rao;Mantena, Venkata Lakshmi Narasimha Raju;Bhukya, Prakash;Paul, Shyam Sunder;Devanaboyina, Nagalakshmi
    • Animal Bioscience
    • /
    • 제35권3호
    • /
    • pp.475-483
    • /
    • 2022
  • Objective: Methionine (Met) is involved in methyl group transfer besides protein synthesis. As the availability is limited and cost is high for synthetic Met, reductions in its inclusion in broiler diet may be possible by supplementing the low Met diets with methyl donors (MD) like betaine (Bet), folic acid (FA), vitamin B12 (B12), and biotin (Bio). An experiment was conducted to study the effects of supplementing the MD on performance (average daily gain [ADG], daily feed intake, feed efficiency [FE]), anti-oxidant variables, immune responses and serum protein concentration in broilers fed sub-optimal concentrations of dietary Met. Methods: Maize-soybean meal diet was used as control (CD). Different MD like Bet (0.2%), B12 (0.1 mg), FA (4 mg), or Bio (1.5 mg/kg) were supplemented to basal diet (BD) having no supplemental Met. The BD without MD was kept for comparison. Each diet was fed ad libitum to 10 replicates of 25 chicks in each from 1 to 42 d of age. Results: At the end of experiment, the ADG in MD group was higher than BD and lower than CD. The FE improved with FA or Bet compared to the BD. Breast meat weight was higher in Bet compared to the BD, while it was intermediate between BD and CD in other groups. The lipid peroxidation reduced with Bio, B12, or Bet, while the glutathione peroxidase activity improved with Bio or B12 compared to the BD. Lymphocyte proliferation improved with Bet compared to the BD. The serum protein concentrations increased with FA, Bio, or Bet compared to those fed BD. Conclusion: It can be concluded that the ADG can be improved partially with supplementation of MD while the FE improved with FA or Bet. Some MD also reduced the stress indices and improved immune responses compared to the BD fed broilers.

제2형 당뇨병 환자에게 엽산과 아스코르브산 보충이 혈장 호모시스테인 농도와 산화 스트레스에 미치는 영향 (Effects of Folic Acid and Ascorbate Supplementation on Plasma Homocysteine and Oxidative Stress in Patients with Type 2 Diabetes Mellitus)

  • 황미리;소주련;임현숙
    • Journal of Nutrition and Health
    • /
    • 제42권2호
    • /
    • pp.107-118
    • /
    • 2009
  • In patients with type 2 diabetes, oxidative stress could be increased by their metabolic changes. Elevated plasma homocysteine is considered as one of markers of enhanced oxidative stress. Due to oxidative stress, some complications like cardiovascular or renal diseases may develop in type 2 diabetes patients. Plasma homocysteine concentration may be increased if folate status were inadequate. Protective effects against oxidative stress may be diminished if the status of anti-oxidative nutrient as vitamin C was poor. It is, therefore, important to maintain adequate status of folate and vitamin C in type 2 diabetes patients. Thus, this study was performed to determine the effects of supplementation of folate and/or ascorbate on blood glycated hemoglobin ($HbA_{1c}$) level, serum concentrations of homocysteine and cholesterol, plasma oxidized low density-lipoprotein (LDL), concentration and plasma glutathione peroxidase (GSH-Px) activity in the patients with type 2 diabetes. A total of 92 type 2 diabetes patients participated voluntarily with written consents. They were divided into one of the four experimental groups; Control (C), Folate-supplemented (F), Ascorbate-supplemented (A), and Folate plus ascorbate-supplemented (FA). The subjects in C were taken placebo, those in F were supplemented 1 mg of folate, those in A received 1,000 mg of ascorbate, and those in FA were given 1 mg of folate plus 1,000 mg of ascorbate daily for 4 weeks. Supplementation of folate or ascorbate resulted to increase serum folate level or plasma ascorbate concentration apparently, respectively. Folate supplementation not ascorbate seemed to decrease plasma concentrations of homocysteine and oxidized LDL and reduce plasma GSH-Px activity. There might not be synergic effect of the supplementation of folate plus ascorbate. The results indicate that oxidative stress in the patients with type 2 diabetes may lower mainly by folate supplementation.

표고균사 갈변시 세포내 효소의 변화 (The changes in intracellular enzyme during the mycelial browning of Lentinula edodes (Berkeley) Sing)

  • 김영호;전창성;박수철;유창현;성재모;공원식
    • 한국버섯학회지
    • /
    • 제7권3호
    • /
    • pp.110-114
    • /
    • 2009
  • 표고균사가 액체배지나 한천배지에서 생장하여 숙성되는 동안 갈변되는 현상을 나타낸다. 표고균사는 접종 25일부터 갈변이 시작되어 30일부터 균총 전반에 걸쳐 이루어지기 시작해 접종 40일까지 갈변이 완전히 이루어진다. 이때 균사내의 효소의 활력을 조사한 결과 phenloxidase계통의 효소들은 laccase는 접종 15일에 가장 높았으며 갈변이 되면서 점점 감소되었으나 tyrosinase는 갈변이 이루어지는 30일부터 급격히 증가하였고 peroxidase는 등전점 전기영동에 의하여 조사한 바 갈변이 이루어지는 30일부터 서서히 증가하였다. 등전점전기영동에 의해 조사된 phosphatase효소는 esterase, acid phosphatase, alkaline phosphatase를 조사하였으며 균사의 갈변이 일어나기 시작하는 접종 30일까지는 증가되었으나 그 이후 갈변이 이루어지는 과정에서는 급격히 감소되었다.

  • PDF

피부(皮膚) 창상(創傷) 동물모델에서 흑삼(黑蔘) 열수 추출물 경구 투여의 효과 (Effects of Oral Administered Hot Water Extracts of Korean Black Ginseng on Wound Healing in Mice)

  • 김태령;김영준;우창훈
    • 한방재활의학과학회지
    • /
    • 제32권1호
    • /
    • pp.1-19
    • /
    • 2022
  • Objectives This study aims to evaluate the wound healing effects of oral administered hot water extracts of Korean black ginseng (KBG). Methods 40 C57BL/6 mice were divided into five groups; normal, control, vitamin E 200 mg/kg, KBG 100 mg/kg, KBG 200 mg/kg, each n=8. Skin wounds were made in the back of all mice except normal group using biopsy punches. Wounds were observed on days 7 and 14 after injury. The anti-oxidant and inflammatory protein levels were evaluated using western blotting. Skin tissue was analyzed by hematoxylin & eosin and Masson's trichrome staining method. Results KBG significantly accelerated reducing wound area. KBG significantly decreased myeloperoxidase activity. KBG significantly decreased oxidative stress factors such as NADPH oxidase-4 and p22phox and increased antioxidant enzymes including nuclear factor erythroid 2-related factor2, kelch-like ECH-associated protein-1, heme oxygenase-1, superoxide dismutase, catalase and glutathione peroxidase-1/2. Moreover, KBG significantly decreased inflammation factors including nuclear factor-κB, phosphorylated inhibitor of κBα, cyclooxygenase-2, inducible nitric oxide synthase, tumor necrosis factor-α and interleukin (IL)-6 and increased anti-inflammation cytokine such as IL-4 and IL-10. In addition, KBG significantly increased tight junction proteins including claudin-1, claudin-3, claudin-4. In histopathologic, KBG made the epithelium thin and uniform, and accelerated the remodeling of collagen. Conclusions The results suggest that KBG has healing effects on skin wound in mice by anti-inflammatory and antioxidant activity.