• Title/Summary/Keyword: permeation flux

Search Result 262, Processing Time 0.024 seconds

Debittering of Citrus Products Using ${\beta}-Cyclodextrin$ Polymer and Ultrafiltration Process (${\beta}-Cyclodextrin$ 중합체와 한외여과 공정을 이용한 감귤류의 쓴맛 성분 제거)

  • Woo, Gun-Jo;Ha, Seung-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.302-308
    • /
    • 1997
  • ${\beta}-Cyclodextrin\;({\beta}-CD)$ polymers were prepared using epichlorohydrin as a cross linking agent. The polymers were separated into ${\beta}-CD$ soluble polymer $({\beta}-CD\;SP)$ and ${\beta}-CD$ insoluble polymer $({\beta}-CD\;ISP)$ on a 10,000 molecular weight cut-off membrane (YM 10). Optimum separation conditions in the YM 10 were: transmembrane pressure 51.7 kPa, separation temperature $35^{\circ}C$, and volume concentration ratio 10. The flux was $0.025\;mL/cm^{2}/min$ under the optimum conditions. Gel permeation chromatography indicated that ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$ had a degree of polymerization of $2{\sim}8$ and over 10, respectively. The formation of an inclusion complex with hydrophobic compounds such as 4-dimethylaminoazobenzene, methyl red, and naringin was compared among ${\beta}-CD,\;{\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. The molar absorptivity for the two chromatic compounds was increased and the absorption peak was shifted in the presence of ${\beta}-CD$ polymers. Naringin, the principal flavonoid bitter tasting component of citrus fruit, had a low water solubility. The solubility of naringin was increased through the formation of an inclusion complex with ${\beta}-CD$ polymers. There was no significant difference in the formation of an inclusion complex between ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. Reduction of the bitter components from citrus products was shown to be possible when employing ${\beta}-CD\;SP$, while the usage of ${\beta}-CD$ monomer has been limited due to the low water solubility.

  • PDF

A Study on the Perstraction Process Using Microporous Hollow Fiber -The Characteristics of Perstraction Using PP and Hollow Fiber- (다공성 실관막을 이용한 투과추출 공정에 관한 연구 -PP 및 PTFE실관막을 이용한 에탄올의 투과추출 특성에 관한 연구-)

  • Cheong, Won;Hwang, Eui-Yoon;Lee, Ho-Won;Kim, Woo-Sik
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.65-77
    • /
    • 1991
  • The perstraction of ethanol and acetic acid were performed for three systems of xylene-acetic acid-water, MIBK-ethanol-water, and TBP-ethanol-water, The operating variables were pressure difference between aqueous and organic phase, and superfial velocities of aqueous and organic phases. The tortuosities of PP hollow fiber membrane of Celgard X10-400 and PTFE hollow fober membrane of Tex TA001 were found to be 1.82 and 1.43 respectively, They were obtained from mass tranfer coeffidents in membrane phase for xylene-acetic acid-water systems. The permeation flux and overall mass transfer coefficient for MIBK-ethanol-water system are larger than those for TBP-ethanol-water system. This tendency is magnified with increasing the superficial velocity of organic phase. Overall mass transfer coefficient($K_o$) increases nonlinearly with the increase of superficial velocity of organic phase($V_{or}$), and the relationship between $K_o$ and $V_{or}$ is that $K_o {\propto} V_{or}^{-0.35}$. For ethanol perstraetion using the hollow fiber membrane of Gore Tex TA001, the mass transfer in membrane phase is the rate-limiting step.

  • PDF

Development of High-Permeability Ceramic Hollow Fiber and Evaluation of CH4/CO2 Separation Characteristics of Membrane Contactor Process (고투과성 세라믹 중공사 개발과 접촉막 공정의 CH4/CO2 분리 특성 평가)

  • Lee, Seung Hwan;Kim, Min Kwang;Jeong, Byeong Jun;Zhuang, Xuelong;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor (HFMC). In order to fabricate high-performance HFMC, experiments were conducted to manufacture high-permeability hollow fiber membranes, and the prepared hollow fiber membranes were evaluated through N2 gas permeation experiments. HFMC for CH4/CO2 mixed gas separation was manufactured using the manufactured high-permeability hollow fiber membrane. In the experiment, mixed gas of CH4/CO2 (34.5% CO2, CH4 balance) and monoetanolamine (MEA) was used, and the effect of CO2 removal efficiency on the flow rate of the absorbent was evaluated. The CO2 removal efficiency increased as the liquid flow rate increased, and the CO2 absorption flux also increased with the liquid flow rate.

A Study on the Treatment of Wastewater from Ion Removal Process for Purifying Electrocoat Paint in the Bath by Use of Reverse Osmosis (역삼투압을 이용한 전착도료 정제공정폐수처리에 관한 연구)

  • 김진성
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 1998
  • To treat effectively EDIR (electrodeposition ion removal) wastewater in terms of CO$_{Mn}$ 1,500~2,000 ppm generated from aluminum painting process, a RO (reverse osmosis) process was designed and installed to recover and reuse the concentrated solvent sent back to the electrocodeposition tank while the permeate reused as rinse water. A RO system in which three polyamide-spiral wound modules ($102\Phi \times 1,016L$ mm) connnected in series had been running to treat 20 m$^3$ in waste volume in 3 days batch operation at the condition of system recovery of 30 %, applied pressure 11.5 $kg_f/cm^2$ and room temperature. During 42 hours continuous operation leading to 5-fold decrease in waste volume, nearly constant permeation flux of 390 l/m$^2$-hr was maintained and the permeate with average CO$_{Mn}$, 300 ppm was obtained which could be used for washing the remaining paint solution in ion-exchange tower instead of demineralized water. Also COD$_{Mn}$ rejection as a function of running time was observed to be in the range of 78~87 % and the observed solvent rejections for ethyl cellusolve, buthyl cellusolve and n-butanol were 79 %, 87 % and 70 %, respectively.

  • PDF

Suction Pressures with respect to the Operational Modes using the Multi-bore Capillary Membranes in the Membrane Bioreactor (생물막 반응기내 다공성 중공사형막을 이용한 운전방식에 따른 흡입 압력)

  • Kim, Min Hyeong;Koo, Eeung Mo;Lee, Min Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.343-350
    • /
    • 2021
  • In this study the suction pressure was measured with respect to operational time by submersing the multi-bore capillary membrane module in membrane bioreactor(MBR). The hexagonal shape capillary module which has the nominal pore size of 0.2 ㎛, outer diameter of 6.4 or 4.2 mm was immersed in MLSS 8,000 mg/L active sludge aqueous solution, and confirmed changes with respect to permeation flux and air flow rate. It was operated by the filtration/relaxation(FR), FR with backwashing(FR/BW), and sinusoidal flux continuous operation(SFCO) modes. The suction pressure for the SFCO and FR modes was lower at 30 and 50 L/m2·hr, respectively. In addition, the suction pressure of the module with a small outer diameter was relatively low. The suction pressure of a large outer diameter was greatly increased, but it could be reduced by more than 40% by backwashing.

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

Fabrication of Photocatalytic TiO2 thin Film Using Aerosol Deposition Method and its Filtration Characteristics (에어로졸 증착법을 이용한 광촉매 TiO2 박막 제조 및 박막의 여과 특성)

  • Choi, Wonyoul;Lee, Jinwoo;Kim, Shijun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2010
  • The objective of this study is to evaluate the effect of operational parameters such as rotation speed and vibrating milling time for the fabrication of photocatalytic $TiO_2$ thin film using aerosol deposition methods. $TiO_2$ powders produced in the range of 1,000-3,000 rpm of rotation speed of centrifugal separator are ineffective on the fabrication of $TiO_2$ thin film by aerosol deposition due to the problem of nozzle powder jam. $TiO_2$ powders controlled by vibrating milling had about 420 nm of average diameter after 2 hr of vibrating milling time. The result of XRD analysis indicated that $TiO_2$ powders had a anatase phase. Vibrating milling methods was considered to be an effective pre-treatment process for $TiO_2$ powder control. Consequently $TiO_2$ photocatalytic thin film with dispersion of anatase crystallites controled by vibrating milling was successfully fabricated by aerosol deposition. The permeation flux of $TiO_2$ photocatalytic thin film with the immobilized $TiO_2$ powder was higher than that of suspended $TiO_2$ powder. Therefore, $TiO_2$ photocatalytic thin film promises to be one of the effective methods for enhancing filtration performance for the treatment of organic pollutants.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.