• Title/Summary/Keyword: permeation

Search Result 1,689, Processing Time 0.028 seconds

Permeation and Permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through Polymeric Hollow Fiber Membranes (고분자 분리막 재질 변화에 따른 $O_2$, $CF_4$, $SF_6$ 투과도 및 투과선택도 특성 변화에 대한 연구)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In this study, we tried to observe the permeation on the single $O_2$, $CF_4$ and $SF_6$ gas using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. We also observed the permselectivity on the $O_2/SF_6$ and $CF_4/SF_6$. According to the results of single gases permeation for different pressures, PSF membrane has the highest $O_2$ permeation of 37.5 GPU and PC membrane has the highest $SF_6$ permeation of 2.7 GPU and the highest $CF_4$ permeation of 2.5 GPU at 1.1 MPa. According to the results of single gases permeation for different temperatures, PSF membrane has the highest permeation of $O_2$ at $45^{\circ}C$ and PC membrane has the highest permeation of $SF_6$ and $CF_4$ at $25^{\circ}C$. From the result of $O_2/SF_6$ and $CF_4/SF_6$ permselectivity for different pressures and temperature, the highest permeation and the lowest permselectivity were observed in the PSF and PC membrane. On the contrary, the lowest permeation and the highest permselectivity was observed in the PI membrane.

Transdermal Permeation of Xanthan Gum Bases on the Water-soluble and Lipophilic Antihyperlipoproteinemic Drugs (수용성과 지용성 항고지단백혈증제에 대한 Xanthan Gum 기재에서의 경피투과)

  • 이석우;임윤택;공승대;황성규;이우윤
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.253-258
    • /
    • 2001
  • Recently, there were many studies not only to enhance drug delivery effect but to reduce side effect. Drug delivery system(DDS) is able to improve efficiency with decreasing side effect of drug dosage. Among these application fields, DDS is often used as the method of drug dosage into the epidermic skin. We investigated characters of transdermal therapeutic system(TTS) and the skin permeability of that with applying DDS. We investigated the permeation of xanthan gum containing drug in rat skin using borizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug with oxiniacic acid and also for lipophilic drug with clofibrate. The permeation rate of lipophilic drug was found to be faster than that of water-soluble drug in vitro. The rate differences of both water-soluble drug and lipophilic drug according to drug content were negligible. We used glycerin, PEG 600 and oleic acid as enhancers. These results showed that skin permeation rate of each drug across the composite was mainly dependent on the property of base and chemical property of drug etc.. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. This result suggests a possible use of natural polymer base as a transdermal delivery system of antihyperlipoproteinemic agent.

  • PDF

The Optimization of Removal Process of Humic Acid by Polysulfone Hollow-fiber Membrane (폴리설폰 중공사막에 의한 부식산 제거공정의 최적화)

  • Song, Kun-Ho;Lee, Kwang-Rae;Lee, Chan-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1273-1284
    • /
    • 2000
  • In this study, ultrafiltration was performed to remove humic acid from aqueous solution. Since the effects of system variables on the ultrafiltration were tangled with non-linearly. Response Surface Methodology(RSM) was used to know optimum conditions of ultrafiltration process, relations among system variables, and the effects of system variables such as pressure difference across the membrane, concentration of humic acid, and feed flow rates. As concentrations of humic acid were 10ppm, 40ppm, and 70ppm in feed stream, permeation fluxes were 2.56, 2.27, and $2.10({\times}10^{-2}cc/cm^2{\cdot}min)$ respectively ; in other words, permeation fluxes of 10ppm, 40ppm and 70ppm feed concentration decreased by 17.7%, 26.7% and 32.2% of pure water permeation flux respectively. Concentration of humic acid in permeate side were 0.5ppm, 1.2 ppm, and 2.1ppm respectively. When pressure difference(${\Delta}P$) increased from 1atm to 2atm and 3atm, permeation fluxes of 40ppm feed concentration increased by 66% and 152% of permeation rate at 1atm respectively. However, concentrations of humic acid in permeate side increased from 0.5ppm to 1.5ppm and 3.5ppm. RSM showed that the optimum condition of system variables is 38.5~40ppm of humic acid concentration in feed stream, 30~30.7cc/min of feed flow rate, and 2atm of pressure difference.

  • PDF

Enhanced Dissolution and Duodenal Permeation of Atorvastatin Calcium Using Bile Salt and 2-Hydroxypropyl-${\beta}$-Cyclodextrin (담즙산염과 2-히드록시프로필-${\beta}$-시클로덱스트린을 이용한 아토르바스타틴칼슘의 용출 및 십이지장 점막 투과 증진)

  • Choi, Ji-Won;Chun, In-Koo
    • YAKHAK HOEJI
    • /
    • v.56 no.3
    • /
    • pp.164-172
    • /
    • 2012
  • This study was aimed to increase the solubility, dissolution and permeation rates of atorvastatin calcium (ATC) using bile salt and/or 2-hydroxypropyl-${\beta}$-cyclodextrin ($HP{\beta}CD$). From solubility studies, sodium deoxycholate (SDC) among bile salts studied was found to have the highest solubilizing effect on ATC ($4.4{\pm}0.4$ mg/ml), and the order of increasing solubility was SDC>sod. cholate>sod. glycocholate>sod. taurodeoxycholate>sod. taurocholate>conjugated bile acid. ATC solid dispersions were prepared at various ratios of drug to SDC and/or $HP{\beta}CD$, and evaluated by differential scanning calorimetry (DSC), dissolution studies and dissolution-permeation studies. DSC curves showed amorphous state of ATC in the physical mixture and solid dispersion. Dissolution rates of ATC-SDC solid dispersions and physical mixture were markedly increased at pH 6.8, but decreased at pH 1.2 with greater proportions of SDC due to the precipitation of SDC, compared with that of drug alone. On the other hand, dissolution rates of ATC-$HP{\beta}CD$ solid dispersion and physical mixture at pH 1.2 were varied with the ratio of drug to carriers. From duodenal permeation studies, it was found that fluxes of ATC (donor dose: 0.5 mg/3.5 ml) in the presence of 25 mM sodium glycocholate, SDC, sod. cholate and sod. taurocholate $(5.7{\pm}0.9$, $5.6{\pm}0.9$, $4.8{\pm}0.7$ and $4.6{\pm}0.9\;{\mu}g/cm^2/hr$, respectively) were enhanced, compared with drug alone ($3.4{\pm}0.9\;{\mu}g/cm^2/hr$). In the dissolution-permeation studies, 1 : 9 : 10 (w/w) ATC-SDC-$HP{\beta}CD$ solid dispersion increased the flux 2.2 times, compared with 1 : 5 : 4 (w/w) ATC-lactose-corn starch mixture as control. In conclusion, solid dispersions with bile salt and $HP{\beta}CD$ were found to be an effective means for increasing the dissolution and permeation rates of ATC.

Effects of CO and $CO_2$ on Hydrogen Permeation through Pd-coated V-Ti-Ni Alloy Membranes (Pd 코팅된 V-Ti-Ni 합금 분리막을 통한 수소투과에서 CO와 $CO_2$의 영향)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2011
  • The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane. The hydrogen permeation characteristics of Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane have been investigated in the pressure range 1-3 bar under pure hydrogen and hydrogen mixture gas with carbon dioxide and carbon monoxide at $450^{\circ}C$. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was $5.36mL/min/cm^2$ for a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane (thick: 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen fluxes were 4.46, 5.20, $3.91mL /min/cm^2$ for$V_{53}Ti_{26}Ni_{21}$ alloy membrane using $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ as the feed gas respectively. Therefore, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure when $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD results after permeation test that the Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane had good stability and durability for various mixtures feeding condition.

Nano-emulsion Containing Parthenocissus tricuspidata Stem Extracts for Enhanced Skin Permeation and the Antibacterial Activity of the Extracts (피부 흡수 증진을 위한 담쟁이덩굴 줄기 추출물 함유 나노에멀젼 및 이의 항균활성 연구)

  • Jo, Na Rae;Park, Min A;Jeon, So Ha;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • In a previous study, we investigated the antioxidative and cellular protective effects of Parthenocissus tricuspidata stem extracts. In this study, we prepared nano-emulsion containing P. tricuspidata stem extract to improve skin permeation. The particle size of the nano-emulsion using the microfluidizer was 302 nm. Its loading efficiency was over 86%. The size distribution of the nano-emulsion took a monodispersed form and the nano-emulsion was more stable than typical emulsion without using microfluidizer during a 2 week period. In vitro skin permeation study of nano-emulsion containing P. tricuspidata stem extracts was carried out using Franz diffusion cell. The 1,3-butylene glycol used as a control group had 32.59% skin permeation efficiency. The skin permeation efficiency of the nano-emulsion was 42.47%. Also, we observed the antibacterial activity of the ethyl acetate fraction on skin flora for prospective applications as a natural antimicrobial. The ethyl acetate fraction had antibacterial activities higher than methyl paraben on Staphylococcus aureus, and Bacillus subtilis. These results indicate that nano-emulsion containing P. tricuspidata stem extracts could possess valued applications in cosmetic formulations for improving skin permeation. Also, based on the antibacterial activities on skin flora, antioxidative and cellular protective effects shown in our previous study, we suggest that P. tricuspidata stem extracts could be used as functional cosmetic materials.