Browse > Article

Permeation and Permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through Polymeric Hollow Fiber Membranes  

Lee, Hyun-Jung (Environment Division, Korea Institute of Science and Technology)
Lee, Min-Woo (Environment Division, Korea Institute of Science and Technology)
Lee, Hyun-Kyung (Department of Industrial Chemistry, Sangmyung University)
Lee, Sang-Hyup (Environment Division, Korea Institute of Science and Technology)
Publication Information
Membrane Journal / v.20, no.3, 2010 , pp. 249-258 More about this Journal
Abstract
In this study, we tried to observe the permeation on the single $O_2$, $CF_4$ and $SF_6$ gas using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. We also observed the permselectivity on the $O_2/SF_6$ and $CF_4/SF_6$. According to the results of single gases permeation for different pressures, PSF membrane has the highest $O_2$ permeation of 37.5 GPU and PC membrane has the highest $SF_6$ permeation of 2.7 GPU and the highest $CF_4$ permeation of 2.5 GPU at 1.1 MPa. According to the results of single gases permeation for different temperatures, PSF membrane has the highest permeation of $O_2$ at $45^{\circ}C$ and PC membrane has the highest permeation of $SF_6$ and $CF_4$ at $25^{\circ}C$. From the result of $O_2/SF_6$ and $CF_4/SF_6$ permselectivity for different pressures and temperature, the highest permeation and the lowest permselectivity were observed in the PSF and PC membrane. On the contrary, the lowest permeation and the highest permselectivity was observed in the PI membrane.
Keywords
sulphur hexafluoride ($SF_6$); oxygen ($O_2$); tetrafluoromethane ($CF_4$); permeation; permselectivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. M. Ettouney, H. T. El-Dessouky, and W. A. Waar, "Separation characteristics of air by polysulfone hollow fiber membranes in series", J. Membr. Sci., 148, 105 (1998).   DOI   ScienceOn
2 A. F. Ismail, B. C. Ng, and W. A. W. Abdul Rahman, "Effects of shear rate and forced convection residence time on asymmetric polysulfone membranes structure and gas separation performance", Sep. Purif. Technol., 33, 255 (2003).   DOI   ScienceOn
3 L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991).   DOI   ScienceOn
4 J.-H. Kim, J. W. Rhim, and S.-B. Lee, "Research trend of membrane technology for separation of carbon dioxide from flue gas", Membrane Journal, 12(3), 121 (2002).   과학기술학회마을
5 S. H. Han, H. B. Park, and Y. M. Lee, "Recent technology trends of polymeric gas separation membranes", Polymer Science and Technology, 19(4), 284 (2008).
6 D.-H. Kim, Y.-M. An, H.-D. Jo, J.-S. Park, and H.-K. Lee, "Studies on the $N_2/SF_6$ permeation behaviors using the polyethersulfone hollow fiber membranes", Membrane Journal, 19(3), 244 (2009).   과학기술학회마을
7 D. R. Paul and Y. Yampol'skii, "Polymeric gas separation membranes", CRC Press, 209 (1994).
8 International Standard, "Guidelines for the checking and treatment of sulfer hexafluoride ($SF_6$) taken from electrical equipment and specification for its re-use", International Electrotechnical Commission, IEC 60480 Second edition (2004).
9 International Standard, "Specification of technical grade sulfer hexafluoride ($SF_6$) for use in electrical equipment", International Electrotechnical Commission, IEC 60376 Second edition (2005).
10 H. J. Lee, M. W. Lee, H. K. Lee, and S. H. Lee, "Separation and recovery of $SF_6$ gas from $N_2/SF_6$ gas mixtures by using a polymer hollow fiber membranes", Korean Society of Environmental Engineers, submited.
11 Y. Yampolskii, I. Pinnau, and B. Freeman, "Meterial science of membranes for gas and vapor separation", John Wiley & Sons, Ltd., 1 (2006).
12 D. T. Clausi and W. J. Koros, "Formation of defect-free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000).   DOI   ScienceOn
13 S. P. Cashion, N. J. Ricketts, and P. C. Hayes, "Characterisation of protective surface films formed on molten magnesium protected by air/$SF_6$ atmospheres", J. Light Metals, 2(1), 37 (2002).   DOI   ScienceOn
14 최대기, 온실가스(HFC, PFC, SF6)저감대책에 관한 기획 연구, 최종보고서, 산업자원부, 101 (2000).
15 U.S. Climate Change Technology, "4.3.3 Semiconductors and Magnesium: Recovery and Recycle", U.S. Climate Change Technology Program - Technology Options for the Near and Long Term, 4.3-4.6 (2005).
16 N. Nakicenovic, J. Alcamo, and G. Davis, de Vries, "Special Report on Emissions Scenarios: 2000", Intergovernmental Panel on Climate Change- Complete online versions, http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/ (2001).
17 S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, "2006 IPCC Guidlines for National Greenhouse Gas Inventories", 3, http://www.ipccnggip. iges.or.jp/public/2006gl/vol3.html, April (2007).
18 S. A. Montzka and P. J. Fraser, "Scientific Assessment of Ozone Depletion: 2002, Controlled Substances and Other Source Gases", World Meteorlogical Organization (WMO), 1.22-1.61 (2003).
19 G. Dagan, G. Agam, V. Krakov, and L. Kaplan, "Carbon membrane separator for elimination of $SF_6$ emissions from gas-insulated electrical utilities", in Proc. of the EPA Conference on SF6 and Environment Emission Reduction Stategies, SanDiago, California, 1-5 (2000).
20 M. Toyoda, H. Murase, T. Inohara, H. Naotsuka, A. Kobayashi, K. Takano, and K. Ohkuma, "Application of pressure swing adsorption to $SF_6$ separation and liquefaction from $SF_6/N_2$ mixtures", 2000 IEEE Power Engineering Society Winter Meeting, 2000WM-475, 2156 (2000).
21 O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_6$ from $N_2/SF_6$ gas mixtures by using a polymer membrane", IEEE Electrical Insulation Magazine, 18(3), 32 (2002).   DOI
22 W.-T. Tsai, "The decomposition products of sulfur hexafluoride (SF6): Reviews of environmental and health risk analysis", J. Fluor. Chem., 128(11), 1345 (2007).   DOI   ScienceOn