• Title/Summary/Keyword: permeable underlayer

Search Result 5, Processing Time 0.018 seconds

Experimental Study for Hydraulic Characteristics as the Permeable Underlayer Thickness of Rubble mound Structure (사석방파제 투수하부층 두께에 따른 사면상의 수리특성 실험연구)

  • 윤한삼;김종욱;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.40-45
    • /
    • 2002
  • In this study, the effects on hydraulic characteristics are discussed as the permeable underlayer thickness of the rubble mound structure changes. A series of hydraulic experiments were performed and wave run-up, reflection and set-up were investigated. Result indicated that wave run-down was affected by the water out from the permeable underlayer during down-rush. As the thickness increased, relative wave run-up decreased.

A Study of the Numerical Model on the Interaction between Irregular Waves and Permeable Coastal Structures (투수성해안구조물과 불규칙파의 상호작용에 관한 수치모델 연구)

  • 김종욱;남인식;윤한삼;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.186-195
    • /
    • 2001
  • The purpose of this study is to develop the time-dependent, one-dimensional numerical model on the interaction between irregular waves and two-layer permeable coastal structures, by extending and modifying the numerical model PBREAK(Wurjanto and Kobayashi, 1992) which is applicable only to one-layer permeable coastal structures. The two-layer permeable coastal structure consists of two permeable underlayers with different permeable media resting on an impermeable slope and an armor layer covering the permeable underlayer. The numerical model of this study simulates the wave over rough permeable underlayer of arbitrary geometry as well as the waves inside two-permeable underlayers of arbitrary thickness for specified normally-incident irregular waves. The utility of the numerical model is founded from comparing with PBREAK and the four hydraulic model tests under irregular waves. The sensitivities of computed results according to typical parameters(porosity, stone diameter, horizontal width of the permeable underlayer) and major factors(friction factor of primary armor layer etc.) discussed.

  • PDF

Experimental study for Hydraulic Characteristics as the Permeable underlayer width of Rubble Mound Structure (사석방파제 투수층 두께에 따른 사면상의 수리특성에 관한 실험연구)

  • 윤한삼;남인식;김종욱;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.160-165
    • /
    • 2001
  • In this study, the effects on hydraulic characteristics are discussed as the permeable underlayer width of the rubble mound structure changes. A series of hydraulic experiments were performed and wave run-up, reflection and set-up were investigated. Results indicated that wave run-down was affected by the water out from the permeable underlayer during down-rush. As the width increased, relative wave run-up decreased.

  • PDF

Computation of Magnetic Thin-Film Head Field with the Boundary Element Method (경계 요소법에 의한 자기 박막 헤드의 자장 계산)

  • Ahn, Chang-Hoi;Lee, Soo-Young;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.50-57
    • /
    • 1989
  • The fringe field of magnetic thin-film head is calculated with the Boundary Element Method (BEM), and the effects of a permeable underlayer to the head field are studied. It is found that the BEM can be efficiently used for this complex problem consisting of three different permeable regions, and the permeable underlayer effectively reduces the length of magnetic flux path and increases the fringe field.

  • PDF

Measurement and Numerical Model on Wave Interaction with Coastal Structure (해안구조물과 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2009
  • In recent years, there's been strong demand for coastal structures that have a permeability that serves water affinity and disaster prevention from wave attack. The aim of this study is to examine the wave transformation, including wave run-up that propagates over the coastal structures with a steep slope. A numerical model based on the nonlinear shallow water equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable underlayer and laboratory measurements was carried out in terms of the free surface elevations and fluid particle velocities for the cases of regular and irregular waves over 1:5 impermeable and permeable slopes. The numerical results were used to evaluate the application and limitations of the PBREAK numerical model. The numerical model could predict the cross-shore variation of the wave profile reasonably, but showed less accurate results in the breaking zone that the mass and momentum influx is exchanged the most. Except near the wave crest, the computed depth averaged velocities could represent the measured profile below the trough level fairly well.