• 제목/요약/키워드: permeability distribution

검색결과 335건 처리시간 0.029초

가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향 (The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell)

  • 조중원;안은진;이승보;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

동 수매 슬래그의 배수용 재료로써의 이용 (The Usage of Copper Slag as The Drainage Materials)

  • 민덕기;황광모;이경준;김현도
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.453-458
    • /
    • 2001
  • Copper slag is produced about 700,000 tons annually though copper refining process in Korea. In the paper, a laboratory investigation was carried out to estimate the geotechnical properties of copper slag and examine the feasibility of using the copper slag as a substitute for conventional construction materials and the improvement of the soft clay deposit. The specific gravity of copper slag is 3.45, and pH is 7.83. And the size distribution of the copper slag is well graded, so usage of copper slag will be extended in Geotechnical engineering fields. Copper slag has the permeability of 3.502${\times}$10 ̄$^2$cm/sec, which is satisfied with the criterion of sand drainage materials.. At the same time, it is thought to be suitable material for sand mat since it meets JIS of grain size distribution. The content of CaO from steel slag is about 40 percent while that of CaO from copper slag is about 5 percent. Based on this fact, copper slag has less hardening property compared to steel slag. Therefore, copper slag can be used as vertical drains, filters, and sand mats for improving the soft deposit.

  • PDF

미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구 (Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness)

  • 조준현;박재만;오환영;민경덕;정지영;이은숙
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF

1MW급 초전도 모터용 고온초전도 계자코일의 전자기적 특성 (Electromagnetic Characteristics of High-temperature Superconducting Field Coil for a 1MW class Superconducting Motor)

  • 백승규;손명환;이재득;이언용;권영길;문태선;박희주;김영춘;박관수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.661-662
    • /
    • 2006
  • On the contrary of a conventional motor with very narrow air-gap, it is difficult to calculate the accurate magnetic field distribution and the performance of an air-cored superconducting motor by 2 dimensional analysis, which does not use high permeability material except outer machine shield. This paper aims to do analysis of magnetic field and force distribution from the 3 dimensional modelling of a 1MW class superconducting synchronous motor. Especially, the field coil composed of Bi-2223 high-temperature superconductor and the outer machine shield are modelled by finite element analysis software according to their structures and the self-inductance and Lorentz force are calculated based on the 3 dimensional magnetic field calculation.

  • PDF

풍력발전용 링플랜지의 유도가열 해석 (Analysis on Induction Heating of Ring Flange for Wind Power)

  • 윤동원;박희창;이인철;김상영;박노경
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.63-69
    • /
    • 2012
  • This paper presents an analysis on the induction heating of ring flange for wind farm. Ring flange is used for the connection of poles when building a column of wind power plant. Heat treatment of ring flange with the diameter of ${\O}1,000mm$ has been considered. For analysis on the induction heating, FEA is used. Firstly, electromagnetic filed analysis was performed to get the induction current distribution on the steel, After that, heat transfer analysis was performed using the magnetic filed analysis results. for more precise analysis, some measurement for permeability has been performed and the measurement data was used during the analysis. From the analysis, we get the temperature distribution on the ring flange.

1MW급 고온초전도 동기기의 전자기적 특성 해석 (Analysis of Electromagnetic Characteristics of a 1MW Class HTS Synchronous Motor)

  • 백승규;권영길;이언용;이재득;김영춘;문태선;박희주;권운식
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.32-36
    • /
    • 2007
  • On the contrary of a conventional motor with very narrow air-gap. it is difficult to calculate the accurate magnetic field distribution and the performance of an air-cored superconducting motor by 2 dimensional analysis. which does not use high permeability material except outer machine shield. This paper aims to do analysis of magnetic field and force distribution from the 3 dimensional modelling of a 1MW class superconducting synchronous motor. Especially. the field coil composed of Bi-2223 high-temperature superconductor and the outer machine shield are modelled by finite element analysis software according to their structures and the self-inductance and Lorentz force are calculated based on the 3 dimensional magnetic field calculation. Moreover. the influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power.

개별균열 연결망 모델에 근거한 추계적 연속체 모델의 구성기법과 두 모델간의 적합성 분석 (A Methodology to Formulate Stochastic Continuum Model from Discrete Fracture Network Model and Analysis of Compatibility between two Models)

  • 장근무;이은용;박주완;김창락;박희영
    • 터널과지하공간
    • /
    • 제11권2호
    • /
    • pp.156-166
    • /
    • 2001
  • 균열암반에서의 지하수유동 모사를 위한 추계적 연속테 모델링 기법이 개발되었다. 추계적연속체 모델은 균열수의 제한을 가지는 개별균열연결망 모델의 단점을 극복할 수 있다. 뿐만 아니라 개별균열연결망 모델에서 가능한 확률론적 해석과 전도성이 큰 균열을 통한 지하수 유동을 근접하게 모사할 수 있는 장점을 가진다. 추계적연속체 모델은 개별균열연결망 모델에 근거하여 생성된다. 개별균열연결망 모델은 일정크기의 소블록으로 나누어지며 각 소블록 투수계수의 확률밀도함수와 베리오그램 함수로부터 추계적연속체 모델에서의 투수계수의 공간적 분포를 정의할 수 있다. 이 연구에서 추계적연속체 모델과 개별균열연결망 모델의 적합성을 보여 주기 위하여 수치실험을 통하여 지하수 유동 이동시간을 계산하고 상호 비교하였다. 그리고 추계적연속체 모델은 방사성폐기물 처분장의 확률론적 안전성 펑가를 위해 필요한 지하수 유동속도의 확률분포를 제공할 수 있는 모델임을 제시할 수 있었다.

  • PDF

입도분포를 이용한 투수계수의 예측 (Prediction of Hydraulic Conductivity from Gran-size Distribution Parameters)

  • Song, Young-Woo;Lee, In-Koo
    • 한국지반공학회논문집
    • /
    • 제18권3호
    • /
    • pp.5-12
    • /
    • 2002
  • 투수계수는 지반공학의 문제를 해결하는 데 중요한 인자의 하나이다. 그렇지만 현장이나 실험실에서 투수계수를 구하려면 시간과 비용이 많이 든다. 이 논문에서는 입도분포를 반영하는 통계적인 계수를 이용하여 모래의 투수계수를 예측할 수 있는 식을 제안하였다. 이를 위해 36가지 입도분포의 시료를 통계적인 방법으로 조성하여 투수시험을 한 후 그 결과를 회귀분석하였다. 제안식은 변수로서 체분석시험에서 구한 모래 입경의 기하평균과 기하표준편차 또는 D_{10},D_{50},D_{60} 등과 같은 입도분포계수를 사용한다. 제안된 식의 성능을 검증하기 위해 국내 20개 지역에서 채취한 시료에 대한 투수계수의 예측치와 실측치를 비교한 결과 비교적 잘 맞는 것으로 판명되였다. 또한 제안식의 성능이 Hazen 등 다른 연구자들의 식과 비교되었다.

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.