• Title/Summary/Keyword: permanent magnetic

Search Result 1,134, Processing Time 0.021 seconds

A Magnetic Field Separation Technique for a Scaled Model Ship through an Earth's Magnetic Field Simulator

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2015
  • This paper presents an experimental technique to accurately separate a permanent magnetic field and an induced one from the total magnetic fields generated by a steel ship, through compensating for the Earth's magnetic field. To achieve this, an Earth's magnetic field simulator was constructed at a non-magnetic laboratory, and the field separation technique was developed, which consisted of five stages. The proposed method was tested with a scaled model ship, and its permanent and induced magnetic fields were successfully extracted from the magnetic field created by the ship. Finally, based on the separated permanent magnetic field data, the permanent magnetization distribution on the hull was predicted by solving an inverse problem. Accordingly, the permanent magnetic fields generated by the ship can easily be calculated at any depth of water.

Design and Implementation of Portable NMR Probe Magnet

  • Junxia, Gao;Yiming, Zhang;Jiashen, Tian
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • The NMR's probe consists of the static magnetic field generator (magnetic source) and the RF coil. It is very strict for the homogeneity of the static magnetic field intensity of the magnetic source, so the cost of the magnetic source is more expensive in the entire nuclear magnetic resonance instrument. The magnetic source generally consists of electromagnet, permanent magnet and superconducting magnet. The permanent magnet basically needs not to spend on operation and maintenance and its cost of manufacture is much cheaper than the superconducting magnet. Therefore, the permanent magnet may be the only choice for the static magnetic field device if we want to use the magnetic resonance instrument as an analyzer for production by reducing price. A new probe magnet was developed on the basis of the permanent magnet ring in this paper to provide a technological way for reducing the manufacturing cost, weight and volume of the existing nuclear magnetic resonance instrument (including MRI) probe.

Analysis of Permanent Magnet Eddy Current Loss by Permanent Magnet Attaching Method of Magnetic Gears (마그네틱 기어의 영구자석 부착방법에 따른 영구자석 와전류손실 분석)

  • Park, Eui-Jong;Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.911-915
    • /
    • 2017
  • Recently, there has been an increasing interest in the non-contact power transmission method of magnetic gears. Since there is no mechanical contact, noise caused by friction can be reduced, and even if a sudden large force is applied, the impact of the gear is close to zero. Further, since the power is transmitted by the magnetic flux, it has high reliability. However, there is a problem that a loss due to a magnetic field due to use of a magnetic flux. The loss caused by the magnetic field of the magnetic gear is a joule loss called eddy current loss. In addition, the eddy current loss in the magnetic gear largely occurs in the permanent magnet, but it is a fatal loss to the permanent magnet which is vulnerable to heat. Particularly, magnetic gears requiring high torque density use NdFeB series permanent magnets, and this permanent magnets have a characteristic in which the magnetic force decreases as temperature increases. Therefore, in this paper, the eddy current loss of the permanent magnet according to the permanent magnet attaching method is analyzed in order to reduce the eddy current loss of the permanent magnet. We have proposed a structure that can reduce the eddy current loss through the analysis and show the effect of reducing the loss of the proposed structure.

Magnetic Levitation System of High Tc Superconductor (초전도 자기부상 시스템)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.213-216
    • /
    • 2006
  • The magnetic levitation effect a high Tc superconductor beneath the toroidal permanent magnet was examined by means of a improved magnetic seesaw method. Magnetic effects associated with penetration and pinning in superconductor. One of these was focussing of magnetic field by superconductor and the other was magnetic levitation. The existence of equilibrium was shown to be related to hysteresis observed in the force separation for a toroidal permanent magnet and superconductor. Obtained results indicate that magnetic levitation effect in the present case was mainly due to diamagnetic effect.

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3 Dimension Equivalent Magnetic Circuit network Method

  • Lim Seung-Bin;Kwon Ho;Kwon Sam-Young;Choi Seung-kil;Baek Soo-Hyun;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.123-128
    • /
    • 2005
  • This paper presents an analysis of the permanent magnet overhang effect for the permanent magnetic actuator. Generally, the overhang is often used to increase the force density in permanent magnet machineries. The overhang is particularly profitable in reducing the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, the 3D Equivalent Magnetic Circuit Network Method (3D EMCN) has been used in this paper. According to the plunger position, the flux distribution per overhang length and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 2D FEM and 3D FEM are compared for the basic model.

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF

Experimental investigation on the room temperature active magnetic regenerator with permanent magnet array (영구자석 배열을 이용한 능동형 자기재생 냉동기에 대한 실험적 연구)

  • Kim, Young-Kwon;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.186-191
    • /
    • 2008
  • In this study, a room temperature AMRR (Active magnetic regenerative refrigerator) was fabricated, and experimentally investigated. Gadolinium (Gd) was selected as a magnetic refrigerant with Curie temperature of 293 K. Permanent magnet was utilized to magnetize and demagnetize the AMR. To produce large magnetic field above 1 T in the magnetic refrigeration space, a special arrangement of permanent magnets, so called Halbach array, is employed. Sixteen segments of the permanent magnets magnetized different direction, constitute a hollow cylindrical shaped permanent magnet. The AMR is reciprocated along the bore of the magnet array and produces cooling power. Helium is selected as the working fluid and a helium compressor is utilized to supply helium flow to the regenerator. The fabricated AMRR has different structure and compared to a convectional AMRR since it has an additional volume after the regenerator. Therefore, the cooling ability is generated not only by magnetocaloric effect of magnetic refrigerant but also by the pulse tube effect. It is verified that the cooling ability of AMR is increased due to the magnetocalric effect by the fact that the temperature span becomes $16^{\circ}C$ while the temperature span is only $8^{\circ}C$ when the magnetic field is not applied to the regenerator.

  • PDF

Study on the Torque Calculation of Touch Free Gear Using Permanent Magnet (영구자석형 비접촉식 동력전달 기어의 전달토크에 관한 연구)

  • Boo Kwangsuck;Choi Young;Yeo Hongtae;Lee Jongil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.119-126
    • /
    • 2004
  • Permanent magnetic gears are magneto-mechanical devices that are widely used to replace the ordinary mechanical gear and to transmit torque without the mechanical contact. This study investigates the characteristics of touch free permanent magnetic gear according to the employing systems. The effect of the magnetic torque is analyzed by using 3 dimensional Finite Element Method (FEM). To estimate the transmission torque of FEM model, the numerical results are compared with the experimental results. The influences of geometry size, magnet number on transmission torque are obtained. As results of this paper, it is confirmed that the transmission torque behavior is associated with the configuration of the magnet numbers and the air gap between the two permanent magnetic gears.

Design of Rotary Magnetic Position Sensor with Sinusoidally Magnetized Permanent Magnet (정현적으로 착자된 영구자석을 갖는 마그네틱 위치센서 설계)

  • Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.506-513
    • /
    • 2007
  • This paper proposes a rotary magnetic position sensor which has a sinusoidally magnetized permanent magnet with a small number of poles. To make the sinusoidal magnetic flux density distribution from the permanent magnet, a magnetizing future is optimized by the DOE(Design of Experiments) method. The magnetization process is analyzed using the Preisach model and 2 dimensional finite element method. The magnetic flux density distribution from the magnetized permanent magnet is very similar to ideal sine wave. The simulation result of the magnetic flux density distribution is compared with the experimental one. Also the availability of the proposed rotary type magnetic position sensor is confirmed by position calculation technique.