• Title/Summary/Keyword: permanent magnet machine

Search Result 377, Processing Time 0.023 seconds

Characteristic Analysis of Rotor Losses in High-Speed Permanent Magnet Synchronous Motor (초고속 영구자석형 동기 전동기의 회전자 손실 특성해석)

  • 장석명;조한욱;이성호;양현섭
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • High-speed permanent magnet machines are likely to be a key technology for electric drives and motion control systems for many applications, since they are conductive to high efficiency, high power density, small size and low weight. In high-speed machines, the permanent magnets are often contained within a retaining sleeve. However, the sleeve and the magnets are exposed to high order flux harmonics, which cause parasitic eddy current losses. Rotor losses of high-speed machines are of great importance especially in high-speed applications, because losses heat the rotor, which is often very compact construction and thereby difficult to cool. This causes a danger of demagnetization of the NdFeB permanent magnets. Therefore, special attention should be paid to the prediction of the rotor losses. This paper is concerned with the rotor losses in permanent magnet high-speed machines that are caused by permeance variation due to stator slotting. First, the flux harmonics are determined by double Fourier analysis of the normal flux density data over the rotor surface. And then, the rectilinear model was used to calculate rotor losses in permanent magnet machines. Finally, Poynting vector have been used to investigate the rotor eddy current losses of high-speed Permanent magnet machine.

Parametric Optimization and Performance Analysis of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application

  • Kumar, Rajesh;Sulaiman, Erwan;Jenal, Mahyuzie;Bahrim, Fatiah Shafiqah
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • To empower safe, economical and eco-friendly sustainable solution for enhancing oil and gas productivity from deep water reservoirs, new downhole technologies are recommended. Since electric machine plays leading role in the downhole application, it is a squeezing requirement for researchers to design and develop advanced electric machine. The Recent improvement in technology and uses of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has become one of the appropriate contenders for offshore drilling but fewer designed for downhole due to ambient temperature. Therefore this comprehensive study deals with the design optimization and performance analysis of outer rotor PMFSM for the downhole application. Preliminary, the basic design parameters needed for machine design are calculated mathematically. Then the design refinement technique is implemented through deterministic method. Finally, initial and optimized performance of the machine is compared and as a result the output torque is increase from 16.39 Nm to 33.57 Nm while diminishing the cogging torque and PM weight up to 1.77 Nm and 0.79 kg, respectively. Therefore, it is concluded that purposed optimized design is suitable for the downhole application.

A New Switched Flux Machine Employing Alternate Circumferential and Radial Flux (AlCiRaF) Permanent Magnet for Light Weight EV

  • Jenal, Mahyuzie;Sulaiman, Erwan;Kumar, Rajesh
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.537-543
    • /
    • 2016
  • Currently, an interest in electric vehicles (EVs) exhibited by automakers, government agencies and customers make it as more attractive research. This is due to carbon dioxide emitted by conventional combustion engine that worsens the greenhouse effect nowadays. Since electric motors are the core of EVs, it is a pressing need for researchers to develop advanced electric motors. As one of the candidates, switched flux machine (SFM) is initiated in order to cope with the requirement. This paper proposes a new alternate circumferential and radial flux (AlCiRaF) of permanent magnet switched flux machines (PMSFM) for light weight electric vehicles. Firstly, AlCiRaF PMSFM is compared with the conventional PMSFM based on some design restrictions and specifications. Then the design refinements techniques are conducted by using deterministic optimization method in order to improve preliminary performance of machine. Finally the optimized machine design has achieved maximum torque and power of 47.43 Nm and 12.85 kW, respectively, slightly better than that of conventional PMSFM.

Permanent Magnet Excited Generator For Gearless Wind Generation Plant

  • Curiac, Paul;Kang, D.H.;Park, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.455-458
    • /
    • 2001
  • This paper presents an axial flux permanent magnet synchronous generator with a high power-to-weight ratio, dedicated for small-scale gearless wind power generation plants. For this purpose, a specific design is necessary to meet the imposed requirements. In this paper the design technique for the specifications is presented. The aim of the paper is also to discuss some of the first obtained test results and the involved demagnetizing problem (i.e. short-circuit).

  • PDF

Initial Magnetic-Circuit Design of High Speed Permanent-Magnet Synchronous Machine (초고속 영구자석 동기기의 기초자기회로설계)

  • Joo, Daesuk;Hong, Do-Kwan;Woo, Byung-Chul;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • This paper presents mathematical models for high speed permanent-magnet synchronous machine. The mathematical method with two successive steps is used to estimate design parameter as well as the output power. At first, mathematical model for a linkage flux problem is employed to calculate the number of winding turns and stack length of armature core. The magnetic circuit model for an induced voltage and the electric circuit model for a current are modeled. The output powers of the electrical generator were evaluated by the mathematical techniques. The results of this mathematical methods predict the specifications of the machine and can be applied in the design stage of the electrical machine.

Modeling and Position-Sensorless Control of a Dual-Airgap Axial Flux Permanent Magnet Machine for Flywheel Energy Storage Systems

  • Nguyen, Trong Duy;Beng, Gilbert Foo Hock;Tseng, King-Jet;Vilathgamuwa, Don Mahinda;Zhang, Xinan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.758-768
    • /
    • 2012
  • This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Improvement of Torque Characteristics of a Rotatory Two-Phase Transverse Flux Machine Optimizing the shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.286-292
    • /
    • 2008
  • Transverse flux machine (TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite to element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a Progressive Quadratic Response Surface Method (PQRSM). It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

  • PDF

Improvement of Torque Characteristics of a Rotatory Two-phase Transverse Flux Machine Optimizing the Shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1003-1011
    • /
    • 2009
  • Transverse flux machine(TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure. In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a genetic algorithm. It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

Characteristic Analysis of Slotless-type Permanent Magnet Synchronous Motor by using Analytical Method (해석적인 방법에 의한 슬롯리스형 영구자석 동기전동기의 특성해석)

  • 강규홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.720-725
    • /
    • 2000
  • This paper persents the characteristic analysis method of slotless-type Permanent Magnet Synchronous Motor using the analytical method. The results of analysis are compered with FEM to verify the validity of the proposed method.

  • PDF

Design and analysis of 300HP, 60,000rpm Permanent Magnet Synchronous Motor for Turbo Machine (터보기기용 300HP, 60,000rpm급 영구자석 동기전동기의 설계 및 특성해석)

  • Jeong, Y.H.;Choi, S.H.;Shin, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.8-14
    • /
    • 2007
  • This paper deals with the electrical design and analysis of a 300HP, 60,000rpm permanent magnet synchronous motor for turbo machine. The design is performed by analytic method of magnetic field theory. And electrical losses of the motor driven by current with sinusoidal and harmonic form are analyzed by using FEM.

  • PDF