• Title/Summary/Keyword: permanent magnet generator

Search Result 316, Processing Time 0.03 seconds

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.

The Study on a Dynamic Analysis of Permanent Magnet Generator considering Overhang Effect (오버행을 고려한 영구자석 동기 발전기의 동특성 해석 연구)

  • Kim, Ki-Chan;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.58-62
    • /
    • 2006
  • The purpose of this paper is characteristic analysis of permanent magnet generator (PMG) for automatic voltage regulator (AVR)power of brush less synchronous generator. However, this PMG has a spoke type permanent magnet rotor with large overhang for high power density, characteristic analysis considering concentration effect of air-gap flux density due to the overhang should be performed. 30 transient finite element method (FEM)analysis is good solution for overhang parameter, but this method needs too much calculation time. In this paper, we examined the overhang effects based on overhang length and material of rotor core by using 20 and 30 static FEM analysis, and proposed 20 dynamic FEA model considering overhang parameter which gives good and rapid results. The proposed method is verified by the test results of no load, load and short circuit test.

  • PDF

Design of Preventing Deviation System of Magnet for high Speed Rotated Surface Mounted Permanent Magnet Synchronous Generator (고속으로 회전하는 표면부착형 영구자석 동기발전기의 마그넷 이탈방지 시스템 설계)

  • Kim, Youngmin;Kim, Jungsu;Park, Sunho;Lim, Minsoo;Bang, Johyug;Ryu, Jiyune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • Surface Permanent-Magnetic-Synchronous-Generator (SPMSG) discussed in the present study has operational characteristics such as high rotational speed over 1,000 rpm and centrifugal force of 12 kN·m for each magnet. Structure-development analysis for the minimization of rotor-core weights and the maximization of thermal emission is performed by applying the aluminum-laminated cap which combines the advantages of IPM and SPM in order to overcome the difficulty that attaching the magnet to rotor-core only with an adhesive. In this study, the simulations in terms of structure and electromagnetic were performed with the variable parameters such as shape and thickness of laminated-cap and division method of magnet. As a result, condition for minimized centrifugal force with minimum loss is derived.

Characteristic Analysis of Double sided Permanent Magnet Linear Generator by using Analytical Method (해석적 방법을 이용한 양측식 선형 영구자석 발전기의 특성해석)

  • Kang, Han-Bit;Choi, Jang-Young;Kim, Kyong-Hwan;Hong, Keyyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.652-659
    • /
    • 2014
  • This paper deals with characteristic analysis of double sided permanent magnet linear generator using analytical method. We derived magnetic field solutions produced by permanent magnet and armature reaction based on the 2D polar coordinate and magnetic vector potential. based on the derived magnetic field solutions, Induced voltage is obtained when arbitrary sinusoidal input condition. In addition, electrical parameters such as back-EMF constant, resistance, and inductance are obtained. Finally, generating performance characteristic at the rated load and various load is examined by using equivalent circuit.

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

A Study on the Analysis on the Direct-Driven High Power Permanent Magnet Generator for Wind Turbine

  • Kim, Ki-Chan;Ihm, Hyung-Bin;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.88-95
    • /
    • 2008
  • In the paper, the permanent magnet synchronous generator of 1.5[MW] output power which is driven directly without gear system is designed by conventional magnetic equivalent circuit method and analyzed by finite element method. We analyzed the characteristics of generator like no load, rated load, short circuit condition and demagnetization of permanent magnet in order to verify the design results by magnetic circuit method. The last, the analysis results of two kinds of rotor types are compared with each other. Especially the THD(total harmonic distortion) of output voltage is examined for the comparison.

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

Design of Magnetic Slot Wedge Shape for Reducing Cogging Torque in Permanent Magnet Synchronous Generator of Direct Drive Type (직구동 방식 영구자석 동기 발전기의 코깅 토크 저감을 위한 자성체 슬롯 ��지 형상 설계)

  • Moon, Jae-Won;Kim, Seung-Joo;Choi, Han-Suk;Park, Su-Kang;Kim, Bong-Ju;Kwon, Byung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.80-87
    • /
    • 2012
  • This paper suggests the slot wedge shape for reducing the cogging torque of a direct-drive permanent magnet synchronous generator for a bike. To consider easy coil winding, we applied a structure of open slot for the permanent magnet synchronous generator (PMSG). Because the cogging torque of PWSG with the open slot is very large, we are designed the appropriate specifications of the PMSG by selected the appropriate material of slot wedge and various slot wedge shapes. The prototype model is selected by design theory for reducing cogging torque and maximizing efficiency of PMSG. And the detailed structure design of the model was designed by the loading distribution method. The PMSG models were analyzed by finite element method. Finally, we have suggested appropriate material of slot wedges and its shape which has benefit to further reducing cogging torque and preventing decreasing of the generating power.

The Analysis of 3MW Embedded Type PMSG for Wind Turbine (풍력 발전기용 3MW 매립형 영구자석동기발전기 해석)

  • Won, Jeonghyun;Lee, Sangwoo;Kim, D.E.;Chung, Chinwha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.180.1-180.1
    • /
    • 2010
  • This paper introduces a 3MW embedded Permanent Magnet Synchronous Generator(PMSG) for wind turbine. The generator features 313mm stator inner radius and 974mm stator length. The blade rotor angular velocity is 15.7 rpm and the gear ratio is set to be 92.93. The nominal generator rpm at rated load is about 1459. The number of poles is six and embedded in the generator rotor. Embedded permanent magnet excitation shows higher reliability, and better efficiency. Using the finite element method, electromagnetic and thermal results are simulated by ANSYS and the results are summarized in this report.

  • PDF