• Title/Summary/Keyword: permanent drainage system

Search Result 7, Processing Time 0.029 seconds

A Study on the Application of Vertical Drainage System for Resisting Uplift of Sub-structure (지하구조물 부력방지를 위한 연직배수시스템의 적용성 연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.183-190
    • /
    • 2001
  • A sub-structure is uplift if the floating greater than dead load of a structure. When such occasion arise, a structure sustain damage. In general, the measures for floating prevention of structure are a permanent anchor method and a drainage method. The primary construction cost of a permanent anchor method is heavy. And a drainage method is needed maintenance management long term. At this point, the measures for floating prevention of a notion being requires the other days. Therefore, at this study a simple construction and a economic vertical drainage system was developed. The findings be used in the in-situ and gave careful consideration to an application. The result of examination, this system considering a characteristic of coefficient of permeability for the ground controls occurrence of floating despite the water level rise of the ground, which a period of construction get shorter compared with other methods, which understood that measures satisfactory in the financial aspect. Especially, A structure occurring effects of flatting under the course of construction made use of it. As the result of the effect of it was confirmed by construction.

  • PDF

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study (지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구)

  • Jo, Seon-Ah;Jin, Gyu-Nam;Sim, Young-Jong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.

A Flood Damage Preventation and Permanent Restoration Method (수해 예방과 항구적인 복구 방안)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.32 no.6
    • /
    • pp.94-99
    • /
    • 1999
  • Recently, flood damage is rapidly increasing because of warming of globe, urbanization and industrialization. As a countermeasure to prevent these flood damages, it is quite required to extend the flood control ability by improving the objective rivers in the watershed and building more medium to large scale reserviors. Simultaneously repairing and rehabilitation of facilities through the safety diagnosis for reinforcement of the facilities should be continuously proceeded. Also extensive implementation of drainage improvement, establishment of prevention and refairing system against flood damage and raise of accuracy of weather forecasting should be proceeded.

  • PDF

A Study on the Groundwater Effects in the Design of Tunilel Lining (배수형 터널내 과다유입수가 터널의 안정에 미치는 영향)

  • Cheon, Byeong-Sik;Choe, Song-Am;Nam, Sun-Seong
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.125-140
    • /
    • 1995
  • Generally, the groundwater pressure is not considered in the design of concrete lining of bottom drainage tunnel. This design method implies that the phreatic surface is drawdown to the bottom of tullnel. When tile groundwater is continually supplied without changing of groundwater table, there is a possibility at which the groundwater pressure acting on the tunnel lining after the completion of tunnel. Therefore, the safety of tunnel lining must be checked in this case. In this paper, the stability of bottom drainage tunnel which is affected by groundwater discharge is analzed by using of the Finite Element Method at the 2 sections of subway where the groundwater level has a tittle change during the construction. As the result of analysis, the grouting for the water tightness and the permanent monitoring system of tunnel are required for maintaining of long-term stability of bottom drainage tunnel for the case of groundwater plassure acting on the tunnel lining is greater than that of design stage.

  • PDF

Retrobulbar Hematoma in Blow-Out Fracture after Open Reduction

  • Cheon, Ji Seon;Seo, Bin Na;Yang, Jeong Yeol;Son, Kyung Min
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.445-449
    • /
    • 2013
  • Retrobulbar hemorrhage, especially when associated with visual loss, is a rare but significant complication after facial bone reconstruction. In this article, two cases of retrobulbar hematoma after surgical repair of blow-out fracture are reported. In one patient, permanent loss of vision was involved, but with the other patient, we were able to prevent this by performing immediate decompression after definite diagnosis. We present our clinical experience with regard to the treatment process and method for prevention of retrobulbar hematoma using a scalp vein set tube and a negative pressure drainage system.

A Case study and Analysis on the Up-Lift Pressure Treatment Evaluation of Underground Installations for their Efficient Adoption (사례분석을 통한 효율적 상향수압(Up-Lift Pressure) 처리공법 적용방안에 관한연구 - ◯◯ 상업지역 현장사례 중심으로 -)

  • Ko, Ok-Yeol;Kwon, Oh-Chul;Shim, Jae-Kwang;Park, Tae-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.119-129
    • /
    • 2009
  • Building construction trends have been changed dramatically in terms of size and mass. With the need to maximize land usage, there has been an increase in the construction of high-rise buildings. This affects not only the entire construction duration and cost, but also subsequent construction activities, such as work to increase underground facilities and in reclamation land area construction. These types of site conditions require soft ground reinforcement and the proper uplift water pressure treatment. In general, two kinds of methods have been used for uplift water pressure treatment systems. However, there have been some problems arising as the result of a lack of research and analysis on underground construction techniques, and a reliance on experiments over actual survey and analysis of site conditions. This paper focused on the problems of conventional selection procedure, by analyzing drawings and proposing a kind of modeling for a reasonable procedure. The results were applied to OO project as a sample construction case to be verified in this research. The initial plan in the case project was the Rock Anchor System. However, as there were terrible miscalculations of basic site conditions that had an extraordinary influence on the underground water level, such as the site's proximity to the Han-river, it was necessary to change the plan to include apermanent drainage system. This achieved a direct construction cost reduction \ 406,702,000 and a maximum sayings of 4% of operational cost, based on the 50-year building Life Cycle Cost.

Respiratory Assist by Use of Electrical Diaphragmatic Pacing (전기자극에 의한 횡격막 조율을 이용한 호흡보조장치)

  • 오중환;김은기;서재정;박일환;김부연;이상헌;이종국;이영희
    • Journal of Chest Surgery
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2001
  • Background: Electrical breathing pacing has many advantages over mechanical ventilation. However, clinically permanent diaphragmatic pacing has been applied to limited patients and few temporary pacing has been reported. Our purpose is to investigate the feasibility of temporary electrical diaphragm pacing in explothoracotomy canine cases. Methods: Five dogs were studied under the general anesthesia. Left 5th intercostal space was opened. Self designed temporary pacing leads were placed around the left phrenic nerve and connected to the myostimulator. Chest wall was closed after tube insertion with underwater drainage. Millar catheter was introduced to the aorta and right atrium. Swan-Ganz catheter was introduced to the pulmonary artery. When the self respiration was shallow with deep anesthesia, hemodynamic and tidal volume were measured with the stimulator on. Results: Tidal volume increased from 143.3$\pm$51.3 ml to 272.3$\pm$87.4 ml(p=0.004). Right atrial diastolic pressure decreased from 0.7$\pm$4.0 mmHg to -10.5$\pm$4.7 mmHg(p=0.005). Pulmonary arterial diastolic pressure decreased from 6.1+2.5 mmHg to 1.2$\pm$4.8 mmHg(p<0.001). The height of water level in chest tube to show intrathoracic pressure change was from 10.3$\pm$6.7cmH$_{2}$O to 20.0$\pm$5.3 cmH$_{2}$O. Conclusion: Temporary electrical diaphragmatic pacing is a simple method to assist respiration in explothoracotomy canine cases. Self designed pacing lead is implantable and removable. Negative pressure ventilation has favorable effects on the circulatory system. Therefore, clinical application of temporary breathing pacing is feasible in thoracotomy patients to assist cardiorespiratory function.

  • PDF