• 제목/요약/키워드: peripheral blood-derived mesenchymal stem cells

검색결과 7건 처리시간 0.023초

Isolation of Peripheral Blood-Derived Mesenchymal Stem Cells in Mares and Foals

  • Ye-Eun Oh;Eun-Bee Lee;Jong-Pil Seo
    • 한국임상수의학회지
    • /
    • 제40권5호
    • /
    • pp.323-329
    • /
    • 2023
  • Peripheral blood-derived mesenchymal stem cells (PB-MSCs) have shown promise in cell-based therapy, as they can be harvested with ease through minimally invasive procedures. This study aimed to isolate PB-MSCs from foals and mares and to compare the proliferation and cellular characteristics of the PB-MSCs between the two groups. Six pairs of mares and their foals were used in this study. MSCs were isolated from PB by direct plating in a tissue culture medium, and cell proliferation (population doubling time [PDT], and colony-forming unit-fibroblast assay [CFU-F]), and characterization (morphology, plastic adhesiveness, colony formation, trilineage differentiation) were examined. There was no significant difference in the PB-MSC yield, CFU-F, and PDT between the mares and foals. PB-MSCs from both mares and foals showed typical MSC characteristics in terms of spindle-shaped morphology, plastic adhesive properties, formation of colonies, trilineage differentiation. These results suggest that PB-MSCs isolated from horses, both adult horses, and foals, can be used for equine cell-based therapy.

말초혈액 유래 간엽전구세포의 골분화 (Osteogenic Differentiation of Circulating Peripheral Blood Derived Mesenchymal Progenitor Cells)

  • 은석찬;김진희;허찬영;백롱민;장학;민경원
    • Archives of Plastic Surgery
    • /
    • 제35권3호
    • /
    • pp.229-234
    • /
    • 2008
  • Purpose: There are some reports presenting that peripheral blood contain circulating hematopoietic cells as well as, in significantly smaller quantities, mesenchymal stem cells. The purposes of this study is to isolate and characterize circulating mesenchymal progenitor cells with osteogenic potential from human peripheral blood. Methods: Human buffycoat containing mononuclear cells was harvested from peripheral blood of normal persons and isolated using a density gradient centrifugation and serially subcultured in osteogenic media for 1-4 weeks. The proliferation capability, phase-contrast microscopy, transmission electron microscopy, immunophenotype FACS analysis, Alizarin red staining and RT-PCR assays for osteogenic differentiation potential were performed. Results: The phenotype of cultured cells changed from small round or cuboidal cells at passage 1 into large spindle-shaped fibroblastic morphology cells at passage 4. Surface marker expressed CD14, but did not express CD34, CD80, CD83. Strong positive staining was observed for Alizarin reds in osteogenic medium on day 14, Using RT-PCR, the mRNA levels of bone- specific genes, such as ALP, c-bfa-1 and osteocalcin were detected. Conclusion: A new subset of peripheral blood derived progenitor cells described here has the ability to proliferate and differentiate into osteogenic cell lineages in vitro, and to be candidate for regenerative therapy.

Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells

  • Shin, Jae Woo;Ryu, Seungwon;Ham, Jongho;Jung, Keehoon;Lee, Sangho;Chung, Doo Hyun;Kang, Hye-Ryun;Kim, Hye Young
    • Molecules and Cells
    • /
    • 제44권8호
    • /
    • pp.580-590
    • /
    • 2021
  • Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.

Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model

  • Kang, Woong Chol;Oh, Pyung Chun;Lee, Kyounghoon;Ahn, Taehoon;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.657-667
    • /
    • 2016
  • Critical limb ischemia (CLI) is one of the most severe forms of peripheral artery diseases, but current treatment strategies do not guarantee complete recovery of vascular blood flow or reduce the risk of mortality. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported to have a paracrine influence on angiogenesis in several ischemic diseases. However, little evidence is available regarding optimal cell doses and injection frequencies. Thus, the authors undertook this study to investigate the effects of cell dose and injection frequency on cell survival and paracrine effects. MSCs were injected at $10^6$ or $10^5$ per injection (high and low doses) either once (single injection) or once in two consecutive weeks (double injection) into ischemic legs. Mice were sacrificed 4 weeks after first injection. Angiogenic effects were confirmed in vitro and in vivo, and M2 macrophage infiltration into ischemic tissues and rates of limb salvage were documented. MSCs were found to induce angiogenesis through a paracrine effect in vitro, and were found to survive in ischemic muscle for up to 4 weeks dependent on cell dose and injection frequency. In addition, double high dose and low dose of MSC injections increased vessel formation, and decreased fibrosis volumes and apoptotic cell numbers, whereas a single high dose did not. Our results showed MSCs protect against ischemic injury in a paracrine manner, and suggest that increasing injection frequency is more important than MSC dosage for the treatment CLI.

제대혈 유래 중간엽줄기세포에서 HLA의 발현과 Mixed Lymphocyte Reaction (Expression of HLA and Mixed Lymphocyte Reaction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood)

  • 이효종;강선영;박세진;이승용;이희천;고필옥;박지권;백원영;연성찬
    • 한국임상수의학회지
    • /
    • 제28권4호
    • /
    • pp.399-402
    • /
    • 2011
  • In recent years, the mesenchymal stem cells (MSC) derived from various tissues have been widely tested for developing cell therapies, tissue repair and transplantation. Although there has been much interest in the immunomodulatory properties of MSC and their immunologic reactions following autologous, allogeneic and xenogenic transplantation of MSC in vivo, up to date, the expression of immunogenic markers, such as class I and II human leukocyte antigens (HLA), after differentiation of human umbilical cord blood (hUCB)-derived MSC has been poorly investigated and require extensive in vitro and in vivo testing. In this experiment, the expression of the HLA-ABC and HLA-DR on hUCB-derived MSC have been tested by immunocytochemical staining. The undifferentiated MSC were moderately stained for HLA-ABC but very weakly for HLA-DR. In order to investigate the inhibitory effect of allogeneic lymphocytes on proliferation of MSC, the MSC were cultured in the presence or absence of peripheral allogeneic lymphocytes stimulated with concanavalin A. The allogeneic lymphocytes did not significantly inhibit MSC proliferation. We conclude that hUCB-MSC expressed moderately class I HLA antigen while almost negatively class II HLA antigen. The MSC have an immunomodulatory effect which can suppress the allogeneic response of lymphocytes. These in vitro data suggest that allogeneic MSC derived from cord blood can be useful candidate for allogeneic cell therapy and transplantation without a major risk of rejection.

Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro

  • Wi, Hayeon;Lee, Seunghoon;Kim, Youngim;No, Jin-Gu;Lee, Poongyeon;Lee, Bo Ram;Oh, Keon Bong;Hur, Tai-young;Ock, Sun A
    • Journal of Veterinary Science
    • /
    • 제22권5호
    • /
    • pp.63.1-63.14
    • /
    • 2021
  • Background: Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable. Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro. Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR. Results: cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes. Conclusions: The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.

인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현 (Surface maker and gene expression of human adipose stromal cells growing under human serum.)

  • 전은숙;조현화;주혜준;김회규;배용찬;정진섭
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.678-686
    • /
    • 2007
  • 인간중간엽줄기세포는(Human mesenchymal stem cells, hMSC) 골수, 지방, 피부, 근육, 혈액에 존재하며, 뼈, 연골, 지방, 근육, 신경세포로 분화가능성이 보고되어 손상조직의 재생을 위한 재료로서뿐만 아니라 유전자치료의 매개체로 이용될 수 있는 가능성이 제안되고 있다. 인간중간엽줄기세포의 적절한 배양조건에는 소 태아혈청(fetal bovine serum, FBS)이 요구되어지므로 세포치료에는 소 태아혈청이 다수 포함되어 있을 것이며 세포배양 배지 유래 소 태아혈청의 단백질에 의한 면역거부반응이 우려된다. 이미 앞선 연구에서 자가혈청 하에서 인체지방줄기세포 분리와 계속적인 세포배양을 실시하였을 때 인체지방줄기세포의 증식능력과 다 분화 능이 유지되며 면역결핍 생쥐에 골수의 말초혈액에서 유래된 CD34세포 이식 시 안착 능을 촉진함을 보였다. 본 연구에서 인체지방줄기세포가 인체혈청 하에서 배양되었을 때 소 태아혈청 하에서 배양할 때 발현하는 표면항원을 유지함을 확인했으며 microarray를 사용하여 유전자 발현을 비교했다. 유 세포 분석을 통하여 인체혈청 하에서 계속적으로 배양된 인체유래지방줄기세포에서 HLA-DR, CD117, CD29 와 CD44 의 발현이 소 태아혈청 하에서 배양했을 때와 비슷함을 밝혔다. 그러나 인체혈청 하에서 배양된 인체지방줄기세포의 유전자 발현형태와 소 태아혈청 하에서 배양된 세포의 유전자 발현형태 간에는 상당한 차이를 보였다. 그러므로 본 연구는 인체혈청 하에서 배양된 인체지방기질줄기세포가 임상적용을 위한 선행 데이터로써 직접적인 추정을 하기 위해서는 인체지방기질줄기세포 이식연구에 in vivo 동물실험연구가 수행되어져야 함을 제시하고 있다.