• Title/Summary/Keyword: perilla seeds oil

Search Result 40, Processing Time 0.025 seconds

Oxidative Stability and Antioxidant Changes in Perilla Seeds and Perilla Oil Affected by UV Irradiation (들깨 및 들기름의 자외선 조사 중 지방질 산화와 산화방지제의 변화)

  • Wang, Seon-Yeong;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • Effects of UV irradiation on lipid oxidation in perilla seeds and perilla oil were evaluated by determining the contents of peroxides, conjugated dienoic acids, and thiobarbituric acid reactive substances, and analyzing fatty acid composition. Tocopherols and polyphenol contents were also determined. Perilla seeds were unroasted or roasted at $180^{\circ}C$ for 20 min, and perilla oil was obtained by pressing the roasted perilla seeds. Lipid oxidation during UV irradiation was higher and faster in perilla oil than that in perilla seeds, with a slight loss of linolenic acid. Unroasted perilla seeds were more oxidation-stable than roasted seeds. Tocopherols and polyphenols were degraded during UV irradiation, with a higher degradation rate observed in unroasted perilla seeds than in roasted ones. Antioxidant concentration dependency of the lipid oxidation during UV irradiation was higher in perilla oil than that in perilla seeds, and the contribution of polyphenols to oxidative stability was higher than that of tocopherols in all samples.

Current Status and Prospects of Quality Evaluation in Perilla (들깨 품질평가 현황과 전망)

  • 이봉호;류수노;곽태순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.150-162
    • /
    • 2002
  • Perilla, Perilla frutescens. (L.) Britton, is a traditional oil seed crops grown in Korea. The seeds and seed oil is used for edible and some industrial sectors. The seeds of perilla contains 35-54% of a drying oil which is similar to the linseed oil. The fatty acids of seed oil is composed with linolenic acid, linoleic acid, and oleic acid. The majority of fatty acids of the oil is $\alpha$-linolenic acid proportioned 51-71% of the oil. This high linolenic acid makes it unstable of the oil and owing to the fast oxidation. Therefore, the plant breeders are challenges to develope a new varieties with low linolenic acid for edlible oil and high linolenic acid for industrial uses. Perilla foliage is also used as a potherb. The green leaves contains a special flavor, perilla aldehyde, and some abundant minerals and vitamins. The vitamin C and $\beta$-carotene is more available than lettuce and crown-daisy of which used for similar potherb and vegetables in traditional Korean food table. The authors are reviewed and discussed on the current status and prospects of the quality evaluations and researches in perilla seeds and leaves to provide and refers the condensed informations on their quality.

Determination of Sesame oil Adulterated with other Vegetable oils by Spectrophotometric Method (자외선 흡수특성을 이용한 참기름의 이종기름 혼입판별에 관하여)

  • 이영근
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.3
    • /
    • pp.151-155
    • /
    • 1993
  • Since there have been no method which can applicable to the screening of commercial sesame oil adulterated with other vegetable oils, the present investigation was carried out particularily focusing on the the pattern of IN absorption of sesame oil and other vegetable oils. For this, a variety of oil samples prepared by the conventional method from sesame seeds, perilla seeds, com, soybean, and rice bran were analyzed by IN spectrophotometer. IN spectra of sesame oil and oil of unheated sesame seeds showed absorption peaks at 215, 230 and 290 nm. While UV spectra of com oil, perilla oil and soybean oil all showed absorption peaks at 215, 230 and 280 nm, that of rice bran oill showed peaks at 215, 290 320 nm. When sesame oil was mixed with com oil, perilla oil or soybean oil, respectively, from which the absorbance of peaks at 290 nm were lower than pure sesame oil. The peak at 320 nm which was typical absorption peak of rice bran oil was still observed in the spectnun of mixture of sesame oil with rice bran oil.

  • PDF

Characterization of Lipophilic Nutraceutical Compounds in Seeds and Leaves of Perilla frutescens

  • Um, Seungduk;Bhandari, Shiva Ram;Kim, Nam-Hoon;Yang, Tae-Jin;Lee, Ju Kyoung;Lee, Young-Sang
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.231-238
    • /
    • 2013
  • Perilla frutescens, which comprises var. frutescens and var. crispa, has been cultivated traditionally in Asian countries as an edible oil, leaf vegetable, and medicinal crop. To evaluate the lipophilic phytonutrient properties of P. frutescens, we selected 54 Perilla accessions [19 landraces of var. frutescens (FL), 22 weedy type var. frutescens (FW), 9 weedy type var. crispa (CW), 2 cultivars of var. frutescens widely cultivated for seed oil (FCS), and 2 cultivars of var. frutescens cultivated as a leaf vegetable (FCL)] and analyzed their seeds and leaves for vitamin E, squalene, and phytosterols. Among the four vitamin E isomers analyzed, ${\gamma}$-tocopherol was the major form of vitamin E in seeds, whereas ${\alpha}$-tocopherol was the major form in leaves of all types of P. frutescens. The highest total vitamin E content in seeds was present in FL ($170.0mg{\cdot}kg^{-1}$), whereas that in leaves was highest in FCL ($358.1mg{\cdot}kg^{-1}$). The highest levels of squalene in seeds and leaves were in FL ($65.5mg{\cdot}kg^{-1}$) and CW ($719.3mg{\cdot}kg^{-1}$), respectively. Among the three phytosterols, ${\beta}$-sitosterol occurred in the highest amount in both leaves and seeds of all of the crop types. Phytonutrient contents were comparatively higher in leaves than in seeds of all crop types. All of these results suggest that the consumption of leaves and seeds of Perilla crops could be beneficial to human health, as Perilla possesses considerable amounts of various lipophilic compounds.

Studies on the Constituents of Korean Edible Oils and Fats -Part 4. Determination of Sesamol in Sesame and Perilla Seeds- (한국산(韓國産) 식물식용유지(植物食用油脂)의 성분(成分)에 관(關)한 연구(硏究) -제(第)4보(報) : 참깨와 들깨종자중(種子中)의 Sesamol의 정량(定量)-)

  • Hwang, Sung-Za;Ko, Young-Su
    • Journal of Nutrition and Health
    • /
    • v.13 no.4
    • /
    • pp.177-186
    • /
    • 1980
  • Experiments were carried out in order to compare the sesamol contents in the methanol extracts and unsaponifiable matters from raw and baked seeds of Korean sesame and perilla by thinchrography. The oil and sesamol contents of sesame seeds were higher than those of perilla seeds. The contents of sesamol in raw and baked sesame seeds were 0.22 and 0.096% respectively in methanol extracts and 0.41 and 0.29% respectively in unsaponifiable matters. The sesame contents in raw and baked perilla seeds were 0.0022 and 0.0043% respectively in methanol extracts and not detected in unsaponifiable matters.

  • PDF

Studies on Antioxidant Activity of Ethanol Extracts from Defatted Perilla Flour (탈지들깨박 Ethanol 추출물의 항산화 효과)

  • Yoon, Suk-Kwon;Kim, Jung-Han;Kim, Ze-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.160-164
    • /
    • 1993
  • The antioxidant activity of ethanol extracts from defatted perilla flour was investigated by measuring peroxide value of perilla oil during storage at $45^{\circ}C$. The antioxidant activity of ethanol extracts was also compared with BHA, BHT and tocopherol. Anti-oxidant activity of ethanol extracts was also examined in corn oil and lard. The ethanol extracts contents of defatted perilla flour and the original perilla seed were 7.69 and 4.56% respectively. The antioxidant activity of ethanol extracts was superior to that of 0.02% BHT, BHA and tocopherol in the perilla oil substrate, merely in concentration of one-twentieth as much as that contained in original perilla oil seeds. The fractions of non-polar solvent (hexane and chloroform) obtained from silicic acid column chromatography are less effective than that of polar solvent as an antioxidant. Antioxidant activity of partially purified ethanol fraction is slightly inferior to that of original crude ethanol extracts. Ethanol extracts were also effective in corn oil and lard almost same as in perilla oil. The total phenolic compound contents of crude ethanol extracts and partially purified ethanol fraction were 9.3, 6.4%, respectively.

  • PDF

Effects of Seed Germination on Oil Oxidation and Tocopherol Stability of Perilla Oil (들깨의 발아가 들깨유의 산화 및 토코페롤 안정성에 미치는 영향)

  • Hwang, Hyun-Suk;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Auto- and photo-oxidative stability of oil extracted from germinated perilla seeds during storage at $60^{\circ}C$ for 4 days was studied by determining peroxide and conjugated dienoic acid values. Tocopherol contents during oil oxidation were also monitored by high performance liquid chromatography. Perilla oil was oxidized and tocopherols were degraded during storage at $60^{\circ}C$ regardless of the presence of light. Light increased oil oxidation and tocopherol degradation. Seeds germinated for 12 h had increased tocopherol contents in the oil and improved the auto- and photo-oxidative stability of the perilla oil. Tocopherol played a more important role as an antioxidant in the presence of light than in the absence of light.

Estimation of Oil Yield of Perilla by Seed Characteristics and Crude Fat Content

  • Oh, Eunyoung;Lee, Myoung Hee;Kim, Jung In;Kim, Sungup;Pae, Suk-Bok;Ha, Tae Joung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.158-163
    • /
    • 2018
  • Perilla (Perilla frutescens var.frutescens) is an annual plant of the Lamiaceae family, mainly grown for obtaining oil by press extraction after roasting the seeds. Oil yield is one of its important traits, but evaluating this yield is time-consuming, requires many seeds, and is hard to adjust to pedigrees in a breeding field. The objective of this study was to develop a method for selecting high-oil-yield lines in a breeding population without oil extraction. Twenty-three perilla cultivars were used for evaluating the oil yield and seed traits such as seed hardness, seed coat thickness, seed coat proportion and crude fat. After evaluation of the seed traits of 23 perilla cultivars, the ranges of oil yields, seed hardness, seed coat thickness, seed coat proportion, 100-seed weight, and crude fat were 24.68-38.75%, 157-1166 gf, $24-399{\mu}m$, 15.4-41.5%, 2.79-6.69 g, and 33.0-47.8%, respectively. In an analysis of correlation coefficients, the oil yield negatively correlated with seed length, seed width, the proportion of seed coat, seed hardness, and 1000-seed weight, but positively correlated with crude fat content. It was observed that as the seed coat proportion increased, the seed coat thickness, hardness, and 1000-seed weight also increased. Multiple linear regression (MLR) was employed to find major variables affecting the oil yield. Among the variables, traits crude fat content and seed coat proportion were assumed to be indirect parameters for estimating the potential oil yield, with respect to a significant positive correlation with the observed oil yield ($R^2=0.791$). Using these two parameters, an equation was derived to predict the oil yield. The results of this study show that various seed traits in 23 perilla cultivars positively or negatively correlated with the oil yield. In particular, crude fat and the seed coat proportion can be used for predicting the oil yield with the newly developed equation, and this approach will improve the efficiency of selecting prominent lines for the oil yield.

Inhibitory Effect of Perilla Sprouts Extracts on Oxidation of Perilla Oil (들깨유의 산화에 대한 들깨 발아 싹 추출물의 억제효과)

  • Kim, Seok-Joong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.330-338
    • /
    • 2012
  • During 10 days germination of perilla seeds for sprouts preparation, the changes of proximate composition and antioxidant activities were monitored, and the inhibitory effect of sprouts extracts on perilla oil oxidation was also studied. The moisture content in seeds(2.9%) was increased to 9.2% in sprouts at 10 days while crude ash content wasn't significantly. The crude fat and protein contents were reduced from 46.8% and 20.7% in seeds to 18.2% and 18.3% in sprouts, respectively, but reducing sugar and fiber contents increased from 2.2% and 14.8% to 12.8% and 22.4%, respectively. Compared with perilla leaf, sprouts at 10 days contained more fat, carbohydrate, reducing sugar, and fiber while less moisture, ash, and protein. Antioxidant activities during germination were increased and reached to maximum at 8 days in which Trolox equivalent antioxidant capacity(TEAC) based on DPPH and ABTS radical scavenging were 133.1 and 136.8 Trolox eq. mmol/kg, respectively, and ferric ion reducing power(FRAP) was 399.3 Fe(II) eq. mmol/kg. Polyphenol content(19.2 g/kg) was maximum at this stage, too. Perilla leaf showed similar TEAC but higher FRAP than the sprouts. When methanol extract of sprouts at 8 days was added to perilla oil, the oil oxidation was delayed in dose dependent manner. The induction time for oxidation was extended about 2.8 times by adding 2.5%(w/w) extract, that is, from 1.67 hr(control) to 4.62 hr. This induction time corresponded to 38% level of that of perilla oil containing 2.5% BHT.

Effect of Temperature and Pressure on the Oil Expression of Perilla Seed (온도와 압력이 들깨종자의 압착착유에 미치는 영향)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-32
    • /
    • 1993
  • In order to elucidate the temperature and pressure effect on the oil expression of perilla seed, recovery of expressed oil (REO) and volumetric strain of both roasted and unroasted perilla seeds were observed at different temperature, pressure and for different periods of press. In this experiment, moisture content of perilla seed was adjusted to 2.5% and temperature used were 30, 40, 50 and $60^{\circ}C$. Pressure applied were 10, 30, 50 and 70 MPa, and periods of press were 5, 7, 9 and 11 min. As temperature and pressure were increased or periods of press was lengthened, REO and volumetric strain of pressed cake were increased. Maximum REO of unroasted perilla seeds were found to be 85.59% and those of roasted perilla seeds be 85.30%, at 70 MPa, $60^{\circ}C$, and for 11 min. Viscosity of expressed oil were exponentially dependent on temperature and REO were increased as viscosity was decreased. From statistical analysis between effects of expression factors and REO and volumetric strain of pressed cake, importance of their effects was decreased in the order of pressure, temperature, $temperature{\times}pressure$ and periods of press. The multiple regression equation between REO(Y) and temperature (T), pressure (P), and periods of press (D) were as follows; $Y=7.95+36.85P+1.12T^2-0.55TP-5.08P^2\;r^2=0.97$ for unroasted perilla seed (p<0.01), $Y=4.50T+39.23P+0.83T^2-1.71P-5.07P^2\;r^2=0.99$ for roasted perilla seed (p<0.01).

  • PDF