• Title/Summary/Keyword: perfusion culture

Search Result 56, Processing Time 0.028 seconds

High Density Culture of KA112 Hybridoma and Effect of Glucose Concentration on MAb Productivity (하이브리도마의 고농도 배양과 포도당 농도가 MAb 생산성에 미치는 영향)

  • 박상재;최차용
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.478-482
    • /
    • 1993
  • Perfusion culture was conducted in Celligen perfusion culture system using a self-constructed hybridoma cell and low serum medium. The culture system employed hollow fiber to separate cells from the culture broth. Maximum cell density of $2.1\times10^7$ ce11s/m1, 10 times higher than in batch culture, could be achieved. Concentration of monoclonal antibody (MAb) was 4 times higher and production rate at maximum feed rate was 9 times higher than in batch culture. Glucose concentration was very important for the cell growth and MAb production. When glucose concentration was below 1g/l, i. e. 0.5~0.9g/l, specific MAb production rate decreased but cell concentration still increased. As the glucose concentration goes above 1g/l, specific MAb production rate increased and remained at maximum value at more than 1.5g glucose/l. The maximum value of the specific Mab production rate was similar to that of batch culture.

  • PDF

Insect Cell Culture for Recombinant $\beta$-galactosidase Production Using a Spin-filter Bioreactor

  • Chung, In-Sik;Kim, Hak-Ryul;Lee, Ki-Woong;Kim, Tae-Yong;Oh, Jai-Hyn;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.200-203
    • /
    • 1994
  • Spodoptera frugiperda IPLB-SF-21-AE cells were cultivated in a spin-filter bioreactor with continuous perfusion for the recombinant $\beta$-galactosidase production. At the perfusion rate of 0.06 $hr^{-1}$, the maximum cell density of insect cells in this bioreactor system reached 3.5$\times$$l0^6$ viable cells/ml using the Grace media containing 5% FBS and 0.3% Pluronic F-68. The recombinant $\beta$-galactosidase production of 8, 100 units per reactor volume was also achieved at this perfusion rate.

  • PDF

Fortification of Amino Acids to Improve Hybridoma Cell Growth and Monoclonal Antibody Production in Perfusion Culture (Perfusion배양시 세포성장 및 항체생산 향상을 위한 아미노산의 보강)

  • 이수영;최병욱;오한규;윤정원;전복환;변태호;박송용
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.188-191
    • /
    • 1999
  • We have investigated the fortifying effect of amino acids on the cell growth and productivity during the perfusion culture of hybridoma vR8 cells in serum-free media. Through the quantitative analysis of amino acids and metabolites in perfusion culture, we found that many amino acids(glutamine, histidine, arginine, methionine, isoleucine, leucine, phenylalanine, tryptophane) were heavily consumed at cell density of $1.06{\times}10^7$cells/mL. Due to amino acid depletion, cells died suddenly. So we supplemented the media with those amino acids by 30-170%. As a result, were could increase maximum cell density by 270%, average specific productivity by 175%, and average volumetric productivity by 560% in this fortified media, GC-HY-S2.

  • PDF

Enhancement of BDNF Production by Co-cultivation of Human Neuroblastoma and Fibroblast Cells

  • Hong, Jong-Soo;Oh, Se-Jong;Kim, Sun-Hee;Park, Kwon-Tae;Cho, Jin-Sang;Park, Kyung-You;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.51-54
    • /
    • 1998
  • It has been proved that co-cultivation of human neroblastoma cells and human fibroblast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76${\times}$106 viable cells/mL from 9${\times}$105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5${\times}$106 viable cells/mL, which was much higher than that form fed-batch cultivation. The nerve cell growth was greatly enhance in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from human fibrobast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.

  • PDF

A New Spin Filter for High Density Culture and Ethanol Production by Saccharomyces cerevisiae

  • Moon, Hyun-Soo;Lim, Dong-Joon;Song, Gu-Young;Kang, Hyun-Ah;Kim, Seung-Wook;Kim, Ik-Hwan;Hong, Suk-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.406-410
    • /
    • 2002
  • A new spin filter consisting of $50{\mu}m$ (nominal pore size) depth fitters rolled on a stainless steel grid was developed, using Saccharomyces cerevisiae as a model suspension cell to evaluate the spin filter performance. In a 1.8-1 fermentor with a rotation speed of 300 rpm and perfusion rate of 4 ml/min, a cell concentration of 49 g/l and ethanol concentration of 45 g/l from 100 g/l glucose could be obtained in a perfusion culture. The major mechanisms for cell separation used by the large-pore spin filter appeared to be centrifugal force and pivotal movement of the cells in the spin filter.

Effect of Low Temperature Preservation and Cell Density on Metabolic Function in a Bioartificial Live

  • Park, Yueng-Guen;Takehiko Tosha;Satoshi Fujita;Boru Zhu;Hiroo Iwata;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4$^{\circ}C$. In an in vitro perfusion culture System, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4$^{\circ}C$. We a1so studied the effect of cell density on the maintenance of BAL liver function In a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatotytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not Successfully prolong BAL function. The viability and function of isolated hepatotytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4$^{\circ}C$ gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.

Primary culture of adult rat hepatocytes and assay of hepatic functions (쥐 간세포의 일차배양과 분화기능 측정)

  • 김진희;이재호박정극최태부
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 1992
  • Rat hepatocytes were isolated by collagenase perfusion method and cultured on the collagen coated dish or on the floating collagen membrane. Using the primary cu1tured hepatocytes, the efficiency of cell attachment and the hepatic functions such as gluconeogenesis, ureogenesis and albumin synthesis were studied. The cell viability was kept above 50% until 5 days and the hepatic functions of ammonia metabolism and albumin synthesis were maintained until 7 days. Floating collagen membrane was found to be more efficient than the collagen coated dish for the maintenance of hepatic function in-vitro.

  • PDF

Encapsulated Animal Cell Culture for the Production of Monoclonal Antibody(MAb)

  • Kim, Sung-Koo;Son, Jeong-Hwan;Yu, Sun-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.73-76
    • /
    • 1997
  • Biopolymer membrane was prepared using two oppositely charged natural biopolymer. The biopolymer membrane was used for the encapsulation of two hybridoma cell lines(ATCC CRL-1606, ATCC BH-8852) to produce monoclonal antibodies. In order to reduce the down stream steps, the pore size of the membrane was controlled to retain the monoclonal antibodies in the capsules based on the diffusion experiments with standard proteins. T-flask culture showed cell densities of 8$\times$107cells/mL 3$\times$107cells/mL, and MAb concentrations of 506 $\mu\textrm{g}$/mL and 109$\mu\textrm{g}$/mL for encapsulated ATCC CRL-1606 and HB-8852, respectively. Two liter perfusion culture with encapsulated ATCC HB-8852 was performed to enhance the MAb production. The MAb production of the encapsulated hybridoma increased considerably comparing to the culture using silicone tubing for oxygen transfer.

  • PDF

EFFECT OF BUTYLATED HYDROXYTOLUENE (BHT) AND ITS METABOLITE ON THE UPTAKE OF TAUROCHOLATE IN PRIMARY CULTURE OF ADULT RAT HEPATOCYTES

  • Dong, Mi-Sook;Choe, Suck-Young;Yang, Kyu-Hwan
    • Toxicological Research
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 1989
  • The effect of butylated hydroxytoluene (BHT) and its major metabolite, 3, 5-di-tert-butyl-4-hydroxybenzoic acid (BHT-acid) on the uptake of taurocholate into hepatocytes was studied using the primary culture of rat hepatocytes. Hepatocyte were isolated by an in situ collagenase perfusion technique and maintained as a monolayer in serum-free meadia for 24 hours before use. The uptake of taurocholate was saturable with an apparent Km of 12.8+2.8 MuM and Vmax of 0.18+0.01 nmol/mg/min. Both BHT and BHT-acid inhibited the hepatocellular uptake of taurocholate when they were added to the culture.

  • PDF