• Title/Summary/Keyword: performance-based engineering method

Search Result 8,162, Processing Time 0.045 seconds

Deformation performance analysis of thin plates based on a deformation decomposition method

  • Wang, Dongwei;Liang, Kaixuan;Sun, Panxu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.453-464
    • /
    • 2022
  • Thin plates are the most common spatially stressed members in engineering structures that bear out-of-plane loads. Therefore, it is of great significance to study the deformation performance characteristics of thin plates for structural design. By constructing 12 basic displacement and deformation basis vectors of the four-node square thin plate element, a deformation decomposition method based on the complete orthogonal mechanical basis matrix is proposed in this paper. Based on the deformation decomposition method, the deformation properties of the thin plate can be quantitatively analyzed, and the areas dominated by each basic deformation can be visualized. In addition, the method can not only obtain more deformation information of the structure, but also identify macroscopic basic deformations, such as bending, shear and warping deformations. Finally, the deformation properties of the bidirectional thin plates with different sizes of central holes are analyzed, and the changing rules are obtained.

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

PERFORMANCE EVALUATION INDEX FOR COMPARING TRADITIONAL CONSTRUCTION METHODS WITH A ROBOT-BASED AUTOMATED CONSTRUCTION METHOD

  • Donguk Oh;Younghoon Lee;Ung-Kyun Lee;Nakju Lett Doh;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1088-1093
    • /
    • 2009
  • To improve construction productivity and quality, and to make the construction environment safe, a new system, Robot-based Construction Automation (RCA), is currently being developed in Korea. To determine whether RCA is an improvement over traditional construction methods (TCMs), an evaluation method, called the Performance Evaluation Index (PEI), is suggested for RCA. The PEI considers the relationships among the factors influencing the performance of the system obtained using the Delphi method and the analytic hierarchy process (AHP). As the evaluation shows, RCA is much better than TCM except for three factors: the rate of work success, quality improvement by learning experience, and construction duration.

  • PDF

DEX2C: Translation of Dalvik Bytecodes into C Code and its Interface in a Dalvik VM

  • Kim, Minseong;Han, Youngsun;Cho, Myeongjin;Park, Chanhyun;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.169-172
    • /
    • 2015
  • Dalvik is a virtual machine (VM) that is designed to run Java-based Android applications. A trace-based just-in-time (JIT) compilation technique is currently employed to improve performance of the Dalvik VM. However, due to runtime compilation overhead, the trace-based JIT compiler provides only a few simple optimizations. Moreover, because each trace contains only a few instructions, the trace-based JIT compiler inherently exploits fewer optimization and parallelization opportunities than a method-based JIT compiler that compiles method-by-method. So we propose a new method-based JIT compiler, named DEX2C, in order to improve performance by finding more opportunities for both optimization and parallelization in Android applications. We employ C code as an intermediate product in order to find more optimization opportunities by using the GNU C Compiler (GCC), and we will detect parallelism by using the Intel C/C++ parallel compiler and the AESOP compiler in our future work. In this paper, we introduce our DEX2C compiler, which dynamically translates Dalvik bytecodes (DEX) into C code with method granularity. We also describe a new method-based JIT interface in the Dalvik VM for the DEX2C compiler. Our experiment results show that our compiler and its interface achieve significant performance improvement by up to 15.2 times and 3.7 times on average, in Element Benchmark, and up to 2.8 times for FFT in Smartbench.

Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types

  • Mohammad Ali Fathalia;Seyed Rohollah Hoseini Vaez
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • In this study, the weight and the connections type layout of low-rise eccentrically braced frame (EBF) have been optimized based on performance-based design method. For this purpose, two objective functions were defined based on two different aspects on rigid connections, in one of which minimization and in the other one, maximization of the number of rigid connections was considered. These two objective functions seek to increase the area under the pushover curve, in addition to the reduction of the weight and selection of the optimum connections type layout. The performance of these objective functions was investigated in optimal design of a three-story eccentrically braced frame, using two meta-heuristic algorithms: Enhanced Colliding Bodies Optimization (ECBO) and Enhanced Vibrating Particles System (EVPS). Then, the reliability indices of the optimal designs for both objective functions were calculated for the story lateral drift limits using Monte-Carlo Simulation (MCS) method. Based on the reliability assessment results of the optimal designs and taking the three levels of safety into account, the final designs were selected and their specifications were compared.

A Case Study of Asphalt Pavement Construction Quality Assurance Using the Quality Related Specification Software

  • Jeong, M. Myung;Jung, Younghan
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.3
    • /
    • pp.14-21
    • /
    • 2016
  • One of the major issues in the material-based or acceptance quality characteristics asphalt pavement Quality Assurance (QA) is that the method does not have rationality to link between the individual materials and the projected performance of the pavement. A new asphalt mix QA method has been recently developed under a national research project using the probabilistic Performance Related Specification (PRS). This advanced PRS QA methodology integrates the AASHTOWare Pavement ME Design$^{(R)}$ technology with the simple performance test concept that bridges the material characteristics with the pavement performance. This paper presents a case study of asphalt pavement performance using the developed PRS QA computer program, named Quality Related Specification Software (QRSS), with an actual pavement project, to demonstrate the developed PRS procedure and to assess the robustness of QRSS in terms of the rationality of the distress predictions. The results of this limited case study show that the new PRS QA method reasonably predicts the pavement performance, properly applied the probabilistic methods, and produced rational pay adjustment.

High Performance Hybrid Direct-Iterative Solution Method for Large Scale Structural Analysis Problems

  • Kim, Min-Ki;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • High performance direct-iterative hybrid linear solver for large scale finite element problem is developed. Direct solution method is robust but difficult to parallelize, whereas iterative solution method is opposite for direct method. Therefore, combining two solution methods is desired to get both high performance parallel efficiency and numerical robustness for large scale structural analysis problems. Hybrid method mentioned in this paper is based on FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal method) which has good parallel scalability and efficiency. It is suitable for fourth and second order finite element elliptic problems including structural analysis problems. We are using the hybrid concept of theses two solution method categories, combining the multifrontal solver into FETI-DP based iterative solver. Hybrid solver is implemented for our general structural analysis code, IPSAP.

Quantifying Risk Factors on Cost Performance By Characterizing Capital Facility Projects

  • Jang, Myung-Hoon;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.4 s.32
    • /
    • pp.177-183
    • /
    • 2006
  • Risk-based estimation has been successfully introduced into the construction industry. By incorporating historical data associated with probability analysis, risk-based estimate is an effective decision support aid in considering whether to launch a particular project. The industry challenges, however, especially related with management issues, such as labor shortage, wage growth, and supply chain complexity, have often resulted in poor cost performance. The insufficient assessing the project characteristics (i.e., resource availability, project complexity, and project delivery method) can be the main reasons in the poor cost performance. Because the accuracy level of cost performance prediction can be enhanced by extensive evaluation of the subject project characteristics, a new approach for predicting cost performance in an earlier stage of a project can improve the Industry substantiality, in other words, value maximization. The purpose of this paper is to develop a new methodology in developing a risk-based estimate tool by incorporating extensive project characteristics. To do this, an extensive industry survey was conducted from both private and public sectors in building industry in Korea. In addition, significant project characteristics were identified in terms of cost performance indicator. Although the data collection is limited to Korean industry the suggested approach provides the industry with a straightforward methodology in risk management. As many researchers maintained that front-end planning efforts are crucial in achieving the successful outcome in building projects, the new method for risk-based estimation can Improve the cost performance as well as enhance the fulfillment in terms of business sustainability.

Adaptive Wavelet Based Speech Enhancement with Robust VAD in Non-stationary Noise Environment

  • Sungwook Chang;Sungil Jung;Younghun Kwon;Yang, Sung-il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.161-166
    • /
    • 2003
  • We present an adaptive wavelet packet based speech enhancement method with robust voice activity detection (VAD) in non-stationary noise environment. The proposed method can be divided into two main procedures. The first procedure is a VAD with adaptive wavelet packet transform. And the other is a speech enhancement procedure based on the proposed VAD method. The proposed VAD method shows remarkable performance even in low SNRs and non-stationary noise environment. And subjective evaluation shows that the performance of the proposed speech enhancement method with wavelet bases is better than that with Fourier basis.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.