• Title/Summary/Keyword: performance test

Search Result 21,626, Processing Time 0.053 seconds

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test (온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로-)

  • Yun, Sung-Wook;Lee, Si-Young;Kang, Dong-Hyeon;Son, Jinkwan;Park, Min-Jung;Kim, Hee-Tae;Choi, Duk-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens ($70{\times}70cm$) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multi-layered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.

Experiments on Flow Characteristics of Asphalt Seal Composite Waterproofing Method for Underground Concrete Structure Exterior Wall Waterproofing (지하 콘크리트 구조물 외벽 방수용 아스팔트 씰재 복합방수 공법의 흘러내림 특성에 관한 실험)

  • Ko, Sang-Ung;Kim, Kyoung-Hoon;Kim, Young-Sam;Shin, Hong-Chul;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.297-303
    • /
    • 2018
  • With the changing trend of the building construction to high rising and large scaling, the underground structure has been increased, and its usage also increased and variety. Hence, to protect the underground structure against underground water, various water proofing methods has been developed. Among the many water proofing methods, the combined water proofing method using both asphalt seal and sheet has been widely used to secure the sufficient performance and decrease the construction failure. However, during the summer period of extremely high temperature conditions, the asphalt sealing materials were separated and leaked into the structure. Therefore, the aim of the research is to provide the quality standard of asphalt sealing material based on the various temperature changes depending on seasons. According to the experimental results, the temperature of the sealing materials applied on the slab was increased up to $54^{\circ}C$ which was $3^{\circ}C$ higher than the structure temperature of $51^{\circ}C$. Based on the melting test for asphalt sealing materials applied on the outside wall of the structure, in the case of water-dispersing typed materials showed significant melting down due to its slow evaporation and low viscosity. Furthermore, from the accelerated test conducted indoor conditions, a solvent-type and water-dispersing typed materials showed significant melting down due to their low viscosity and melting point in ambient conditions. Based on these results, viscosity and melting point are found as the important factors on asphalt sealing materials' quality, and it is necessary to designate the quantitative level of the viscosity and melting point for quality control.

Cross-cultural Adaptation and Psychometric Evaluation of the Korean Version of the A-ONE (한국판 일상생활활동중심 작업기반 신경행동평가(A-ONE)의 개발 및 평가)

  • Kang, Jaewon;Park, Hae Yean;Kim, Jung-Ran;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.10 no.2
    • /
    • pp.109-128
    • /
    • 2021
  • Objective : The purpose of this study was to develop a Korean version of the Activities of Daily Living (ADL)-focused Occupation-Based Neurobehavioral Evaluation (A-ONE) through cross-cultural adaptation and examine its validity and reliability. Methods : This study translated the A-ONE into Korean and performed cross-cultural adaptation for the Korean population. After the development of the Korean version of the A-ONE, cross-cultural and concurrent validities were analyzed. Internal consistency, test-retest reliability, and inter-rater reliability were also evaluated. Results : We adapted three items to the Korean culture. The Korean version of the A-ONE showed high cross-cultural validity with a content validity index (I-CVI) >0.9. It correlated with the Functional Independence Measure (FIM) (r=0.52-0.77, p<0.001), except for communication. Cronbach's α was 0.58-0.93 for the functional independence scale (FI) and 0.42-0.93 for the neurobehavioral specific impairment subscale (NBSIS). Intraclass correlation coefficients (ICCs) indicated high test-retest and inter-rater reliability for FI (ICC=0.79-1.00 and 0.75-1.00, respectively) and NBSIS (ICC=0.74-1.00 and 0.72-1.00, respectively). Conclusion : The Korean version of the A-ONE is well adapted to the Korean culture and has good validity and reliability. It is recommended to evaluate ADL performance skills and neurobehavioral impairments simultaneously in Korea.

Development of Marine Virus-like Particles Live/Dead Determination Method for the Performance Evaluation of Ballast Water Treatment System (선박평형수처리장치 성능 평가를 위한 해양 바이러스 생사판별 방법 개발)

  • Hyun, Bonggil;Woo, Joo-Eun;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Bae, Mi-Kyung;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.431-438
    • /
    • 2021
  • To prepare more stringent regulations for USCG Phase II ballast water management, this study investigated the staining efficiency of SYBR Green I(SGI) and SYBR Gold(SG) on the virus-like particle (VLP). A dye with high staining efficiency was applied to the treated water that was passed through the ballast water treatment system (BWTS). VLP staining was observed most clearly under the 100-fold and 200-fold dilution of the stock solution when the volume of filtered samples was 0.5 mL to 2 mL. The staining efficiency of SGI and SG did not show a significant difference. On the other hand, the green fluorescence of viruses in the sample stained with SGI was more pronounced than in the samples stained with SG (expressed yellow fluorescence), making it easier to observe. The abundance of VLP in the test water and control water treatments that did not pass through the two types of BWTS (electrolysis type, UV + electrolysis type) was approximately 109 - 1010 VLP 100 mL-1. In contrast, no stained VLP was observed in the treated water treatments. Moreover, SGI was confirmed to be effectively stained under various salinity conditions, including seawater, brackish water, and freshwater. Further verification tests and development of staining methods under various BWTS are required, but the SGI staining method is believed to be a good alternative to the VLP live/dead determination of the USCG Phase II type approval test.

Synthesis and Lubricating Properties of Succinic Acid Alkyl Ester Derivatives (숙신산 알킬 에스테르 유도체의 합성 및 윤활특성)

  • Baek, Seung-Yeob;Kim, Young-Wun;Chung, Keun-Wo;Yoo, Seung-Hyun;Park, Su-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.196-202
    • /
    • 2011
  • In this paper, a series of alkyl succinic acid esters for base oil were synthesized by condensation reaction of succinic anhydride and fatty alcohol. The structures of the synthesized esters were confirmed by $^1H-NMR$, FT-IR spectrum and GC analysis. Basic properties of esters such as kinematic viscosity (KV), refractive index (RI), total acid number (TAN) and pour points were measured and lubricating properties such as SRV wear scar diameter (SRV WSD), fraction coefficient (COF) and 4-ball wear (4-ball WSD) were also evaluated. As the results of basic properties, KV, RI and pour point of synthetic esters increased as the carbon chain of the esters increased. Measurement value of total acid number (TAN) was indicated between 0.2~4 mgKOH/g, and that metal working fluids and pressure working oils are acceptable to use as base oil. Also, lubricating properties of the esters showed as follows: 0.391~0.689 mm of SRV WSD, 0.110~0.138 of SRV COF and 0.49~0.55 mm of 4-ball WSD depended on the structure of the esters. In a comparison on the lubrication capacity of the SRV test based on polyester TMPTO, SRV WSD result showed that a better performance caused by the alkyl group. On the other hand, SRV COF test was not influenced of the alkyl group which the capacity of the lubricant was sightly diminished than the comparison material, regardless of the alkyl group.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

A COVID-19 Diagnosis Model based on Various Transformations of Cough Sounds (기침 소리의 다양한 변환을 통한 코로나19 진단 모델)

  • Minkyung Kim;Gunwoo Kim;Keunho Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.57-78
    • /
    • 2023
  • COVID-19, which started in Wuhan, China in November 2019, spread beyond China in 2020 and spread worldwide in March 2020. It is important to prevent a highly contagious virus like COVID-19 in advance and to actively treat it when confirmed, but it is more important to identify the confirmed fact quickly and prevent its spread since it is a virus that spreads quickly. However, PCR test to check for infection is costly and time consuming, and self-kit test is also easy to access, but the cost of the kit is not easy to receive every time. Therefore, if it is possible to determine whether or not a person is positive for COVID-19 based on the sound of a cough so that anyone can use it easily, anyone can easily check whether or not they are confirmed at anytime, anywhere, and it can have great economic advantages. In this study, an experiment was conducted on a method to identify whether or not COVID-19 was confirmed based on a cough sound. Cough sound features were extracted through MFCC, Mel-Spectrogram, and spectral contrast. For the quality of cough sound, noisy data was deleted through SNR, and only the cough sound was extracted from the voice file through chunk. Since the objective is COVID-19 positive and negative classification, learning was performed through XGBoost, LightGBM, and FCNN algorithms, which are often used for classification, and the results were compared. Additionally, we conducted a comparative experiment on the performance of the model using multidimensional vectors obtained by converting cough sounds into both images and vectors. The experimental results showed that the LightGBM model utilizing features obtained by converting basic information about health status and cough sounds into multidimensional vectors through MFCC, Mel-Spectogram, Spectral contrast, and Spectrogram achieved the highest accuracy of 0.74.

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.