• Title/Summary/Keyword: performance evaluation table

Search Result 200, Processing Time 0.031 seconds

Performance evaluation of suspended ceiling systems using shake table test

  • Ozcelik, Ozgur;Misir, Ibrahim S.;Saridogan, Serhan
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.121-142
    • /
    • 2016
  • The national standard being used in Turkey for suspended ceiling systems (SCS) regulates material and dimensional properties but does not contain regulations regarding installation instructions which cause substandard applications of SCSs in practice. The lack of installation instructions would potentially affect the dynamic performance of these systems. Also, the vast majority of these systems are manufactured using substandard low-quality materials, and this will inevitably increase SCS related damages during earthquakes. The experimental work presented here focuses on the issue of dynamic performance of SCSs with different types of carrier systems (lay-on and clip-in systems), different weight conditions, and material-workmanship qualities. Moreover, the effects of auxiliary fastening elements, so called seismic perimeter clips, in improving the dynamic performance of SCSs were experimentally investigated. Results show that clip-in ceiling system performs better than lay-on system regardless of material and workmanship qualities. On the other hand, the quality aspect becomes the most important parameter in affecting the dynamic performance of lay-on type systems as opposed to tile weights and usage of perimeter clips. When high quality system is used, tile weight does not change the performance of lay-on system, however in poor quality system, tile weight becomes an important factor where heavier tiles considerably decrease the performance level. Perimeter clips marginally increase the dynamic performance of lay-on ceiling system, but it has no effect on the clip-in ceiling system under the shaking levels considered.

A Condition Processing System of Active Rules Using Analyzing Condition Predicates (조건 술어 분석을 이용한 능동규칙의 조건부 처리 시스템)

  • Lee, Gi-Uk;Kim, Tae-Sik
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

Design and Evaluation of a Rotation Table using Air Bearings for Electron Beam Mastering (전자빔 마스터링을 위한 공기베어링 응용 고진공 회전테이블의 설계 및 진공특성 평가)

  • Khim, Gyung-Ho;Song, Chang-Kyu;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.132-138
    • /
    • 2008
  • Recently, mastering processes for high density optical disc such as Blu-ray disc rely on electron beams, which are operable in only vacuum. In the mastering process, one of the most important tasks is to design precision stages for providing precise positioning of the works with respect to the source in a high vacuum environment. In this paper, we have developed a precision rotation table usable in the electron beam mastering. The rotation table adopted air bearings for a high positioning repeatability and velocity stability. The air leakage from the air bearings has been minimized by employing the differential exhaust scheme using three steps of air drain. The design parameters such as diameters of exhaust lines, seal lengths, and pumping speeds were decided according to the optimization method using genetic algorithm. The performance on the vacuum level of the rotation table was evaluated experimentally and theoretically. The results indicate that a vacuum level of $10^{-4}$ Pa is achieved with operation of air bearings in a vacuum chamber, which is sufficient for the electron beam mastering.

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Performance Analysis of Tree-based Indexing Scheme for Trajectories Processing of Moving Objects (이동객체의 궤적처리를 위한 트리기반 색인기법의 성능분석)

  • Shim, Choon-Bo;Shin, Yong-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.1-14
    • /
    • 2004
  • In this study, we propose Linktable based on extended TB-Tree(LTB-Tree) which can improve the performance of existing TB (Trajectory-Bundle)-tree proposed for indexing the trajectory of moving objects in GIS Applications. In addition, in order to evaluate proposed indexing scheme, we take into account as follows. At first, we select existing R*-tree, TB-tree, and LTB-tree as the subject of performance evaluation. Secondly, we make use of random data set and real data set as experimental data. Thirdly, we evaluate the performance with respect to the variation of size of memory buffer by considering the restriction of available memory of a given system. Fourth, we test them by using the experimental data set with a variation of data distribution. Finally, we think over insertion and retrieval performance of trajectory query and range query as experimental measures. The experimental results show that the proposed indexing scheme, LTB-tree, gains better performance than traditional other schemes with respect to the insertion and retrieval of trajectory query.

  • PDF

The XP-table: Runtime-efficient Region-based Structure for Collective Evaluation of Multiple Continuous XPath Queries (The XP-table: 다중 연속 XPath 질의의 집단 처리를 위한 실행시간 효율적인 영역 기반 구조체)

  • Lee, Hyun-Ho;Lee, Won-Suk
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.307-318
    • /
    • 2008
  • One of the primary issues confronting XML message brokers is the difficulty associated with processing a large set of continuous XPath queries over incoming XML seams. This paper proposes a novel system designed to present an effective solution to this problem. The proposed system transforms multiple XPath queries before their run-time into a new region-based data structure, called an XP-table, by sharing their common constraints. An XP-table is matched with a stream relation (SR) transformed from a target XML stream by a SAX parser. This arrangement is intended to minimize the runtime workload of continuous query processing. Also, system performance is estimated and verified through a variety of experiments, including comparisons with previous approaches such as YFilter and LazyDFA. The proposed system is practically linear- scalable and stable for evaluating a set of XPath queries in a continuous and timely fashion.

A Study on the Calculation of Ternary Concrete Mixing using Bidirectional DNN Analysis (양방향 DNN 해석을 이용한 삼성분계 콘크리트의 배합 산정에 관한 연구)

  • Choi, Ju-Hee;Ko, Min-Sam;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.619-630
    • /
    • 2022
  • The concrete mix design and compressive strength evaluation are used as basic data for the durability of sustainable structures. However, the recent diversification of mixing factors has created difficulties in calculating the correct mixing factor or setting the reference value concrete mixing design. The purpose of this study is to design a predictive model of bidirectional analysis that calculates the mixing elements of ternary concrete using deep learning, one of the artificial intelligence techniques. For the DNN-based predictive model for calculating the concrete mixing factor, performance evaluation and comparison were performed using a total of 8 models with the number of layers and the number of hidden neurons as variables. The combination calculation result was output. As a result of the model's performance evaluation, an average error rate of about 1.423% for the concrete compressive strength factor was achieved. and an average MAPE error of 8.22% for the prediction of the ternary concrete mixing factor was satisfied. Through comparing the performance evaluation for each structure of the DNN model, the DNN5L-2048 model showed the highest performance for all compounding factors. Using the learned DNN model, the prediction of the ternary concrete formulation table with the required compressive strength of 30 and 50 MPa was carried out. The verification process through the expansion of the data set for learning and a comparison between the actual concrete mix table and the DNN model output concrete mix table is necessary.

Performance Evaluation of Tuned Liquid Mass Damper for Reducing Bi-directional Responses of a Building Structure (건축구조물의 2방향 진동제어를 위한 TLMD 제어성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.432-441
    • /
    • 2008
  • In this study, the control performance of a Tuned Liquid Mass Damper(TLMD) manufactured to reduce the orthogonal bi-directional responses of building structures was experimentally evaluated. the TLMD using only one control device reduce bi-directional responses of building structures by making the TLMD behave as TMD and TLCD to the strong and weak axial direction of building structures. first, the control performance was evaluated by forcing sinusoidal waves to a test model that the TLMD is installed on the scale-downed building structure. Second, the real-time hybrid shaking table test was performed to evaluate the performance of the vibration control system made up of numerical part as a scale-downed building structural model and a physical experimental part as a TLMD. the superiority of bi-directional vibration control performance of the manufactured TLMD was verified by comparing the uncontrolled and controlled results of these tests.

  • PDF

Shake Table Test on Seismic Performance Evaluation of the Bolted Connection Type Paneling System with Exterior Finish Material (외부마감재가 부착된 볼트접합 방식 패널링 시스템의 내진성능평가를 위한 진동대 실험)

  • Oh, Sang Hoon;Park, Jong Won;Park, Hae Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.