• Title/Summary/Keyword: performance evaluation and design

Search Result 3,778, Processing Time 0.046 seconds

A Study on Improvement of Evacuation Safety Evaluation for Performance Based Design in Underground Parking Lot (지하주차장 성능위주설계의 피난안전성 평가 개선에 관한 연구)

  • Song, Young-Joo;Kong, II-Chean;Kim, Hak-Jung
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • Today, building constructions are becoming larger, higher, deeper, and complex to improve quality of human life and meet various needs. As a result, new design space for non - typically standardized space has been created, and targets for performance-based design are also becoming increased. An evacuation safety evaluation of performance-based design should be compared with ASET and RSET estimation so that the value of RSET does not exceed the value of ASET. However, there is a problem that it is difficult to secure the safety with using the performance-based design evaluation method currently in use, especially in case of the underground parking lot, because it has wide compartment area and various routes for evacuation. Therefore, in order to overcome these problems, this paper first investigates the simulation setting method of the performance-based design that is currently in use, and then conducts two fire simulations and three evacuation simulations for underground parking lots each time, so performs the evacuation safety evaluationin total six cases of situations. Here this paper analyzes the problem with comparative evaluation research and suggests the better solution for improved evacuation safety evaluation of performance-based design.

The Development of Performance Evaluation System for Air-Operated Actuaotr (공기구동기 성능평가 시스템 개발)

  • Cho T.D.;Yang S.B.;Lee H.Y.;Yang S.M.;Kwon B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1770-1773
    • /
    • 2005
  • The performance evaluation of AOV(air-operated valve) requires the processes to confirm the actuator system capability. It is necessary to evaluate the thrust of the air actuator for the margin evaluation. In this paper, to evaluate and analysis the air actuator, the performance test system and operating program are developed. This system is composed of several sensors such as pressure sensor, LVDT, and LoadCell which are used to get the data for evaluation. The LabVIEW was used for developing the operating program. The test system and operating program are proved through the actual test of the diaphragm actuator.

  • PDF

Exploring Long-Term Performance in Design-Build Best-Value Evaluation Criteria

  • Calahorra-Jimenez, Maria;Poore, Tanner
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.74-82
    • /
    • 2022
  • Improving long-term performance in highway projects is an imperative goal for public administrations. Project delivery and procurement methods might provide an opportunity to align design and construction processes with this goal. Previous studies have explored whether project delivery methods impact the long-term performance of highway projects. However, these studies did not focus specifically on how core elements within the procurement might relate to long-term performance. Thus, this research aims to fill this gap by exploring to what extent and how long-term evaluation criteria are considered in design-build best-value procurement of highway projects. To this end, content analysis was conducted on 100 projects procured between 2009 and 2019 by 19 DOTs across the U.S. The analysis of 365 evaluation criteria found that (1) roughly 11% of them related to long-term performance. (2) The weight given to these criteria in the overall technical proposal was lower than 30%. (3) Sixty-five percent (65%) of long-term evaluation criteria focused on design while 15% related to materials and technology, respectively. The results of this study are a first steppingstone to initiate a deep exploration of the relationship between procurement practices and actual project performance. Currently, with sustainability and life cycle assessments being top concerns in infrastructure projects, this line of research might be of particular interest to DOTs and highway agencies across the U.S. and worldwide.

  • PDF

Development of the Evaluation Element for Fire Engineering Design (건축물의 성능적 내화설계 평가 요소기술 개발)

  • Kwon, In-Kyu;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.410-414
    • /
    • 2009
  • Performance based fire engineering design should be developed through basic survey and fundamental element such as analytic program for evaluation of fire performance of building. The basic elements will be expressed to the surveys of the structures of building laws, regulation and the fundamental elements consist of technical guidances contained design fires, heat analysis, determination of structural performance.

  • PDF

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

Implementation of RPMS, the Evaluation and Management Tool for Urban Residential Performance and Possible Applications (도시주거지역 거주성 및 거주성능의 평가 및 관리도구 RPMS의 구현과 활용제안)

  • Park, Soo-Hoon;Lee, Sang-Hyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • People evaluate urban residential regions quite frequently and sensitively, considering issues such as locations or ease of use of in-site facilities or nearby urban facilities, and those results are bound to be reflected to real estate costs quite immediately. However, there have been frequently recurring questions regarding objectivity of evaluations in terms of results and methods reflected on indexes such as land costs for various reasons. RPMS -Residence Performance Management System- which targets currently in most cases on urban residential areas, suggests instrumental methodology of objective approach toward sensitive urban residence performance evaluation. This paper explains and suggests instrumental utilization of RPMS and its implementations, evaluation methodology and quantitative way of evaluation. In terms of implementation we explain issues such as adding target locations into new residence planning sites, quantification of properties on evaluation indexes of residential performance and/or habitability in terms of checklists, formulas for evaluation, delicate adjustment of evaluation results by setting weights on evaluation indexes, as well as reports on results. Research on appropriate weights and weight settings regarding evaluation indexes, however, exceeds the range of this paper so that this paper focuses on explaining residence performance evaluation and management methodology.

A Design-Decision Support Framework for Evaluation of Design Options in Passenger Ship Engine Room

  • Kim, Soo-Woong;Lee, Hyun-Jin;Kwon, Young-Sub
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • Most real world design evaluation and risk-based decision support combine quantitative and qualitative (linguistic) variables. Decision-making based on conventional mathematics that combines qualitative and quantitative concepts always exhibit difficulty in modelling actual problems. The successful selection process for choosing a design/procurement proposal is based on a high degree of technical integrity, safety levels and low costs in construction, corrective measures, maintenance, operation, inspection and preventive measures. However, the objectives of maximising the degree of technical performance, maximising the safety levels and minimising the costs incurred are usually in conflict, and the evaluation of the technical performance, safety and costs is always associated with uncertainties, especially for a novel system at the initial concept design stage. In this paper, a design-decision support framework using a composite structure methodology grounded in approximate reasoning approach and evidential reasoning method is suggested for design evaluation of machinery space of a ship engine room at the initial stages. It is a Multiple Attribute Decision-Making (MADM) or Multiple Criteria Decision Making (MCDM) framework, which provides a juxtaposition of cost, safety and technical performance of a system during evaluation to assist decision makers in selecting the winning design/procurement proposal that best satisfies the requirement in hand. An illustrative example is used to demonstrate the application of the proposed framework.

  • PDF

Evaluation of Lighting Performance of Mixed Type Light-shelf in Residential Space According to Angular Variations (주거공간의 혼합형 광선반 각도 변화에 따른 채광성능 평가)

  • Chae, Woori;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.424-433
    • /
    • 2014
  • The purpose of this study is to evaluate the effectiveness in the lighting performance of mixed type light-shelf, by comparing and analyzing the internal light-shelf, external light-shelf, and mixed-type light-shelf. The performance of light-shelf was evaluated according to the angle of light-shelf at summer solstice, winter solstice, vernal equinox, and autumn equinox. The comparative analysis between the internal light-shelf, external light-shelf, and mixed-type light-shelf was carried out using the performance evaluation and analysis method. The result of performance evaluation is shown as follows. The mixed type light-shelf showed the highest lighting performance all at summer solstice, winter solstice, vernal equinox, and autumn equinox, followed by the external light-shelf and the internal light-shelf in the same order. The mixed type light-shelf was the most favorable for bringing daylight to indoors by adjusting the angle of light-shelf, and it also showed the highest lighting performance in terms of uniformity ratio of illumination which indicates the quality of light.

Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China

  • Jiang, Huanjun;Lu, Xilin;Zhu, Jiejiang
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.545-560
    • /
    • 2012
  • Design codes provide the minimum requirements for the design of code-compliant structures to ensure the safety of the life and property. As for code-exceeding buildings, the requirements for design are not sufficient and the approval of such structures is vague. In mainland China in recent years, a large number of code-exceeding tall buildings, whether their heights exceed the limit for the respective structure type or the extent of irregularity is violated, have been constructed. Performance-based seismic design (PBSD) approach has been highly recommended and become necessary to demonstrate the performance of code-exceeding tall buildings at least equivalent to code intent of safety. This paper proposes the general methodologies of performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China. The PBSD approach proposed here includes selection of performance objectives, determination of design philosophy, establishment of design criteria for structural components and systems consistent with the desirable and transparent performance objectives, and seismic performance analysis and evaluation through extensive numerical analysis or further experimental study if necessary. The seismic analysis and design of 101-story Shanghai World Financial Center Tower is introduced as a typical engineering example where the PBSD approach is followed. The example demonstrates that the PBSD approach is an appropriate way to control efficiently the seismic damage on the structure and ensure the predictable and safe performance.

Seismic Performance Evaluation of Unreinforced Masonry Buildings Retrofitted by Strengthening External Walls (외부벽체 강도증진형 보강이 적용된 비보강 조적조 건물의 내진성능평가)

  • Seol, Yun Jeong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.