• Title/Summary/Keyword: performance enhancement

Search Result 2,937, Processing Time 0.024 seconds

An Adaptive Image Enhancement of the DCT Compressed Image using the Spatial Frequency Property (공간주파수 특성을 이용한 DCT 압축영상의 적응 영상 향상)

  • Jeon, Seon-Dong;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.104-111
    • /
    • 2010
  • This paper presents an adaptive image enhancement method using the spatial frequency property in the DCT(discrete cosine transform) compressed domain. The dc coefficients, the illumination components of image, are adjusted to compress the dynamic range of image, and the ac coefficients are modified to enhance the contrast by using the human visual system(HVS) and the spatial frequency property. The ac coefficients are separated into vertical direction, horizontal direction, and mixed spatial frequency components, and adaptively modified to minimize the block artifacts that possibly occur in the image enhancement. The proposed method using dynamic range compression and adaptive contrast enhancement shows the advanced performance without the block artifact compared with existing method.

A Comparative Study on Image Enhancement Methods for Low Contrast Images (저대비 영상을 위한 영상향상 기법들의 비교연구)

  • Kim, Yong-Soo;Kim, Nam-Jin;Lee, Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.467-472
    • /
    • 2005
  • The principal objective of enhancement methods is to process an image so that the output image is more suitable than the original image lot a specific application. Images taken in the night can be low-contrast images because of poor environments. In this paper, we compared the performance of Image Contrast Enhancement Technique Using Clustering Algorithm(ICECA) with those of color adjustment methods such as Histogram Equalization(HE), Brightness Preserving Bi-Histogram Equalization(BBHE), and the Multi-Scale Refiner(MSR). We compared these methods by applying the image enhancement methods to a set of diverse images.

A study on deep neural speech enhancement in drone noise environment (드론 소음 환경에서 심층 신경망 기반 음성 향상 기법 적용에 관한 연구)

  • Kim, Jimin;Jung, Jaehee;Yeo, Chaneun;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2022
  • In this paper, actual drone noise samples are collected for speech processing in disaster environments to build noise-corrupted speech database, and speech enhancement performance is evaluated by applying spectrum subtraction and mask-based speech enhancement techniques. To improve the performance of VoiceFilter (VF), an existing deep neural network-based speech enhancement model, we apply the Self-Attention operation and use the estimated noise information as input to the Attention model. Compared to existing VF model techniques, the experimental results show 3.77%, 1.66% and 0.32% improvements for Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligence (STOI), respectively. When trained with a 75% mix of speech data with drone sounds collected from the Internet, the relative performance drop rates for SDR, PESQ, and STOI are 3.18%, 2.79% and 0.96%, respectively, compared to using only actual drone noise. This confirms that data similar to real data can be collected and effectively used for model training for speech enhancement in environments where real data is difficult to obtain.

Cooling Performance Enhancement of a Rocket Engine Injector Face Plate (로켓엔진 분사면의 냉각성능 향상)

  • Cho Won Kook;Seol Woo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.92-100
    • /
    • 2005
  • An optimal fuel manifold is suggested to improve the cooling performance of an injector face plate. The cooling performance at the center area of the injector face plate is to be augmented while the spatial injection uniformity is maintained. The comparison of the cooling performance of f candidates gives the conclusion that the dividing plate from 2-3 injector .ow to 9-10 injector. row is an optimal. The maximum face plate temperature decreases by 27$\%$ while the injection uniformity is close to that of the original design. The pressure drop in the fuel manifold of the optimal design is also same as the original design.

A Study on Unit Cell Design for the Performance Enhancement in PEMFC System (PEMFC 시스템의 성능향상을 위한 단위전지 설계에 관한 연구)

  • Kim Hong-Gun;Kim Yoo-Shin;Yang Sung-Mo;Nah Seok-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 2005
  • The catalyst layer design is one of the most important factors to enhance the performance of PEMFC(Proton Exchange Membrane Fuel Cell) system. The hydrophobic and ion conductive type is studied for the MEA(Membrane Electrolyte Assembly). It is found that those have some limitations for performance enhancement when they are used separately. Thus, the dual catalyst type, a mixed model, is developed for the better MEA performance. In the meantime, the design of flow field plate is subsequently carried out in order to give more enhanced output during its operation. The conductivity of flow field plate showed better performance in the case of manufactured by the more compressed process(20MPa) than by the less compressed process(10MPa). The micro-structure of the flow field plate is examined in details using SEM(Scanning Electron Microscope) to analyse the effects on the different compression processes.

Performance Analysis of OFDM/QPSK-DMR System Using One-tap Adaptive Equalizer over Microwave Channel Environments (Microwave 채널 환경에서 단일적응등화기를 이용하는 OFDM/QPSK-DMR 시스템의 성능 분석)

  • 안준배;양희진;조성언;오창헌;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.517-522
    • /
    • 2004
  • In this paper, we have analyzed the performance enhancement of Orthogonal Frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio(OFDM/QPSK-DMR) system using Band Limited-Pulse Shaping Filter(BL-PSF) over microwave channel environments. For performance enhancement, the one-tap adaptive equalizer is adopted in the OFDM/QPSK-DMR system and than both BER and signature curve performance are compared with those of single carrier DMR system. Computer simulations confirm that the OFDM/QPSK-DMR system using 16 sub-carrier increase the fade margin about 2 dB over microwave channel environments and that of performance using one-tap adaptive equalizer is highly increased the fade margin as the number of sub-carriers is larger.