• 제목/요약/키워드: performance data-driven approach

검색결과 81건 처리시간 0.031초

도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가 (Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline)

  • 신은허;정기문;김경필;최태호;채선하;조용우
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.

A novel approach to predict surface roughness in machining operations using fuzzy set theory

  • Tseng, Tzu-Liang (Bill);Konada, Udayvarun;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.1-13
    • /
    • 2016
  • The increase of consumer needs for quality metal cutting related products with more precise tolerances and better product surface roughness has driven the metal cutting industry to continuously improve quality control of metal cutting processes. In this paper, two different approaches are discussed. First, design of experiments (DOE) is used to determine the significant factors and then fuzzy logic approach is presented for the prediction of surface roughness. The data used for the training and checking the fuzzy logic performance is derived from the experiments conducted on a CNC milling machine. In order to obtain better surface roughness, the proper sets of cutting parameters are determined before the process takes place. The factors considered for DOE in the experiment were the depth of cut, feed rate per tooth, cutting speed, tool nose radius, the use of cutting fluid and the three components of the cutting force. Finally the significant factors were used as input factors for fuzzy logic mechanism and surface roughness is predicted with empirical formula developed. Test results show good agreement between the actual process output and the predicted surface roughness.

Hybrid CTC-Attention Network-Based End-to-End Speech Recognition System for Korean Language

  • Hosung Park;Changmin Kim;Hyunsoo Son;Soonshin Seo;Ji-Hwan Kim
    • Journal of Web Engineering
    • /
    • 제21권2호
    • /
    • pp.265-284
    • /
    • 2021
  • In this study, an automatic end-to-end speech recognition system based on hybrid CTC-attention network for Korean language is proposed. Deep neural network/hidden Markov model (DNN/HMM)-based speech recognition system has driven dramatic improvement in this area. However, it is difficult for non-experts to develop speech recognition for new applications. End-to-end approaches have simplified speech recognition system into a single-network architecture. These approaches can develop speech recognition system that does not require expert knowledge. In this paper, we propose hybrid CTC-attention network as end-to-end speech recognition model for Korean language. This model effectively utilizes a CTC objective function during attention model training. This approach improves the performance in terms of speech recognition accuracy as well as training speed. In most languages, end-to-end speech recognition uses characters as output labels. However, for Korean, character-based end-to-end speech recognition is not an efficient approach because Korean language has 11,172 possible numbers of characters. The number is relatively large compared to other languages. For example, English has 26 characters, and Japanese has 50 characters. To address this problem, we utilize Korean 49 graphemes as output labels. Experimental result shows 10.02% character error rate (CER) when 740 hours of Korean training data are used.

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

멀티프로세서용 임베디드 시스템을 위한 UML 기반 소프트웨어 모델의 분할 기법 (A Partition Technique of UML-based Software Models for Multi-Processor Embedded Systems)

  • 김종필;홍장의
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.87-98
    • /
    • 2008
  • 임베디드 시스템의 하드웨어 구성요소들에 대한 성능 고도화가 요구됨에 따라 이에 탑재될 소프트웨어의 개발 방법도 영향을 받고 있다. 특히 MPSoC와 같은 고가의 하드웨어 아키텍처에서는 효율적인 자원의 사용 및 성능의 향상을 위해 소프트웨어 측면에서의 고려가 필수적으로 요구된다. 따라서 본 연구에서는 임베디드 소프트웨어 개발과정에서 멀티프로세서 기반의 하드웨어 아키텍처를 고려하는 소프트웨어 태스크의 분할기법을 제시한다. 제시하는 기법은 UML 기반의 소프트웨어 모델을 CBCFG (Constraints-Based Control Flow Graph)로 변환하고, 이를 병렬성과 데이터 의존성을 고려한 소프트웨어 컴포넌트로 분할하는 기법이다. 이러한 기법은 임베디드 소프트웨어의 플랫폼 의존적인 모델 개발과 태스크 성능 예측 등을 위한 자료로 활용할 수 있다.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.175-184
    • /
    • 2020
  • Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.

Design Fuzzy Controller for the Ball Positioning System Based on the Knowledge Acquisition and Adaptation

  • Hyeon Bae;Jung, Jae-Ryong;Kim, Sungshin
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.603-610
    • /
    • 2001
  • Industrial processes are normally operated by skilled humans who have the cumulative and logical information about the system. Fuzzy control has been investigated for many application. Intelligent control approaches based on fuzzy logic have a chance to include human thinking. This paper represents modeling approach based upon operators knowledge without mathematical model of the system and optimize the controller. The experimented system is constructed for sending a ball to the goal position using wind of two DC motors in the predefined path. A vision camera to mimic human eyes detects the ball position. The system used in this experiment could be hardly modeled by mathematical methods and ould not be easily controlled by conventional manners. The controller is designed based on the input-output data and experimental knowledge obtained by trials, and optimized under the predefined performance criterion. And this paper shows the data adaptation for changeable operating condition. When the system is driven in the abnormal condition with unconsidered noise, the new optimal operating parameters could be defined by adjusting membership functions. Thus, this technique could be applied in industrial fields.

  • PDF

Formulating A Competitive Advantage Model for Tourism Destinations in Indonesia

  • LESMANA, Henky;SUGIARTO, Sugiarto
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권3호
    • /
    • pp.237-249
    • /
    • 2021
  • Indonesia has successfully increased its ranking to 40th place in the 2019 Travel & Tourism Competitiveness Index. While tourism has become the country's second largest foreign exchange contributor, there is no existing competitive advantage model for Indonesian tourist destinations. The purpose and novelty of this study is to develop and formulate a competitive advantage model for Indonesia's tourism industry. The model will be based on the supply-side perception analysis of competitiveness indicators from Bali and five designated super-priority destinations in Indonesia. This model is expected to become a guideline for policymakers to design an effective and focused strategy. Data were obtained from in-depth interviews with, and questionnaires given to, 62 qualified industry players from the public and private sectors. This data-driven approach builds a relationship between competitiveness indicators and competitive advantages using a combination of importance-performance analysis and confirmatory factor analysis, thereby leveraging these advantages to generate a strategic model to compete in the international tourism industry. This would also be the first study to use this method in defining the competitive advantage of a destination. Using structural equation modeling, the study found that there are 54 indicators representing twelve dimensions of competitive advantages with good fit criteria.

A Machine Learning-Driven Approach for Wildfire Detection Using Hybrid-Sentinel Data: A Case Study of the 2022 Uljin Wildfire, South Korea

  • Linh Nguyen Van;Min Ho Yeon;Jin Hyeong Lee;Gi Ha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.175-175
    • /
    • 2023
  • Detection and monitoring of wildfires are essential for limiting their harmful effects on ecosystems, human lives, and property. In this research, we propose a novel method running in the Google Earth Engine platform for identifying and characterizing burnt regions using a hybrid of Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (multispectral photography) images. The 2022 Uljin wildfire, the severest event in South Korean history, is the primary area of our investigation. Given its documented success in remote sensing and land cover categorization applications, we select the Random Forest (RF) method as our primary classifier. Next, we evaluate the performance of our model using multiple accuracy measures, including overall accuracy (OA), Kappa coefficient, and area under the curve (AUC). The proposed method shows the accuracy and resilience of wildfire identification compared to traditional methods that depend on survey data. These results have significant implications for the development of efficient and dependable wildfire monitoring systems and add to our knowledge of how machine learning and remote sensing-based approaches may be combined to improve environmental monitoring and management applications.

  • PDF