• Title/Summary/Keyword: performance based of design

Search Result 10,864, Processing Time 0.038 seconds

A Study on Improvement of Evacuation Safety Evaluation for Performance Based Design in Underground Parking Lot (지하주차장 성능위주설계의 피난안전성 평가 개선에 관한 연구)

  • Song, Young-Joo;Kong, II-Chean;Kim, Hak-Jung
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • Today, building constructions are becoming larger, higher, deeper, and complex to improve quality of human life and meet various needs. As a result, new design space for non - typically standardized space has been created, and targets for performance-based design are also becoming increased. An evacuation safety evaluation of performance-based design should be compared with ASET and RSET estimation so that the value of RSET does not exceed the value of ASET. However, there is a problem that it is difficult to secure the safety with using the performance-based design evaluation method currently in use, especially in case of the underground parking lot, because it has wide compartment area and various routes for evacuation. Therefore, in order to overcome these problems, this paper first investigates the simulation setting method of the performance-based design that is currently in use, and then conducts two fire simulations and three evacuation simulations for underground parking lots each time, so performs the evacuation safety evaluationin total six cases of situations. Here this paper analyzes the problem with comparative evaluation research and suggests the better solution for improved evacuation safety evaluation of performance-based design.

Current practices and future directions of steel design in Japan

  • Yamaguchi, Eiki
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.159-168
    • /
    • 2005
  • Four design codes/regulations for steel structures in Japan are briefly reviewed. Some of them employ the limit state design concept while the others are still based on the allowable stress design concept. The process for revision is now in action. The directions in the development of structural design codes are also reported herein. It is noted that a current trend in this development is to employ the performance-based design concept that has been successfully implemented in some seismic design codes.

Performance-Based Seismic Design (내진설계의 성능 기준화)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.4-10
    • /
    • 1997
  • The fundamental philosophy underlying the seismic design of structures and systems are evolving into the performance based concept. The background and current status of this development in other countries are briefly summarized. The new code system which consists of two level seismic design criteria will be introduced. The implementation of the preformance based design concepts in the criteria will be explained.

  • PDF

A Study on the Effects of Wage Data Design Scheme on Customer Satisfaction and Turnover Reduction : Focusing on the Case of TASTE FITNESS (조직 내 임금 데이터 설계가 고객만족 및 이직률 감소에 미치는 영향: TASTE FITNESS 사례를 중심으로)

  • Kim Jinsu;Kim Sunggun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.101-115
    • /
    • 2024
  • Compensation plays an important role in increasing the satisfaction of organizational members and reducing turnover. A balanced approach including competitive base salary and performance-based compensation can meet the financial and psychological needs of members, creating more dedicated and satisfied organizational members. From this perspective, this study was conducted on the impact of trainers' performance-based compensation system on customer satisfaction and turnover rate, focusing on TASTE FITNESS. TASTE FITNESS established differentiated compensation and performance-based compensation system based on performance-based compensation for each job group of counselors, managers, and trainers working within the organization, and confirmed that this led to the turnover rate of organizational members and customer satisfaction. However, a more efficient and satisfactory compensation system can be established by supplementing the stability of performance-based compensation, supporting the initial entry stage, diversifying performance-based compensation, and strengthening long-term performance-based compensation. This is an issue that should be considered not only by TASTE FITNESS but also by all similar industries.

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

Development of Optimal Performance based Seismic Design Method using Displacement Coefficient Method (변위계수법을 활용한 최적 내진 성능기반 설계기법 개발)

  • 이현국;권윤한;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.103-110
    • /
    • 2004
  • Recently, performance based seismic design (PBSD) methods in numerous forms have been suggested and widely studied as a new concept of seismic design. The PBDSs are far from being practical due to complexity of algorithms resided in the design philosophy In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this paper, strength design criteria, stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 9-story two-dimensional steel frame structures.

  • PDF

Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames (2차원 철골 구조물의 최적 성능기반 내진설계법 개발)

  • Kwon Bong-Keun;Lee Hyun-Kook;Kwon Yun-Man;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.