• 제목/요약/키워드: performance based design

검색결과 10,866건 처리시간 0.05초

Comparison of Database Models for Developing a Pavement Performance Analysis System

  • Choi Jae-ho
    • 한국건설관리학회논문집
    • /
    • 제5권4호
    • /
    • pp.79-86
    • /
    • 2004
  • One of the most difficult tasks in pavement management information systems is establishing the links between performance measures of a structure and the design and construction inputs. In-situ pavement performance can be considered a response variable to many project input variables, such as design, construction, and traffic loading effects. If we are to fully understand the component of pavement performance and specify the inputs through design and construction specifications to achieve that performance we must develop quantitative relationship between input and response variables through a scientific, fully integrated Pavement Performance Analysis System (PPAS). Hence, the objective of this study is to design a database model required for developing an effective database template that will allow analysis of pavement performance measures based on design and construction information linked by location. In order to select the most appropriate database model, a conceptual database model (Entity Relationship Model) and dimensional model, which is believed to be the most effective modeling technique for data warehouse project, are designed and compared. It is believed that other state highway agencies could adopt the proposed design strategy for implementing a PPAS at the discretion of the state highway agencies.

성능위주설계에서 화재위험성 예측 과정의 문제점 및 개선방안 (The Problems and Improvements of Process to Predict Fire Risk of a Building in Performance Based Design)

  • 이세명
    • 대한안전경영과학회지
    • /
    • 제16권3호
    • /
    • pp.145-154
    • /
    • 2014
  • Performance based design(PBD) is the method to make a fire safety design against them after predicting the factors of fire risk in a building. Therefore, predicting fire risk in a building is very important process in PBD. For predicting fire risk of a building, an engineer of PBD must consider various factors such as ignition location, ignition point, ignition source, first ignited item, second ignited item, flash over, the state of door and fire suppression system. But, it is difficult to trust fire safety capacity of the design because the process in Korea' PBD is unprofessional and unreasonable. This paper had surveyed some cases of PBD that had been made in Korea to find the problems of the process to predict fire risk. And it have proposed the improvements of process to predict fire risk of a building.

등가 성능모델을 이용한 토크 컨버터의 기초 설계에 관한 연구 (A Study on the Basic Design of a Torque Converter Using Equivalent Performance Model)

  • 장욱진;임원식;이장무
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.369-377
    • /
    • 1997
  • The torque converter, a major part of automatic transmissions, has many difficulties in analysis due to the factors such as power transmission through fluid flow, complex internal geometry, and various operating conditions. Because of such difficulties, the dynamic analysis and design of a torque converter are generally carried out by using equivalent performance model which is based on the concept of mean flow path. Since the design procedures of a torque converter are essential technology of automotive industry, the details of the procedures are rarely published. In this study, the basic design procedures of a torque converter are systemized and coded based on the equivalent performance model. The mathematical methods to deal with mean flow path determination and the core-shape are developed. And by using this model, the method of determination of performance parameters satisfying the requested performance is proposed. Finally, to embody the three-dimensional shape, the intermediate blade angles which maximize the tractive performance are determined and laid out.

수학 교과에서의 수행과제를 활용한 수업 방안 탐색 -백워드 이론을 기반으로- (An Investigation on the Mathematical Instruction Utilizing Performance Tasks according to the Backward Design)

  • 황혜정;박현주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제55권1호
    • /
    • pp.107-127
    • /
    • 2016
  • The purpose of this study was to explore the possibility of mathematical instruction through performance task activities based on the The Backward Design, which was suggested at first by Wiggins & McTighe in 1998. The Design deals with a performance assessment task involving the whole objective and its entire content of a lesson. Based on the Backward Design, this study established the mathematical instructional materials, which deal with the concept of 'the sector' taught in middle school, with one large performance task including three small tasks. It is important that in the lesson students be guided to achieve the several learning goals by themselves through reasoning activities. For this purpose, a formal interview was carried out by the subject of three middle school mathematics teachers. As a result, in order to implement the instruction utilizing the performance tasks more efficiently in future, it is required that a large performance task should be selected or developed including the content or problem contexts to be relevant with the real-life challenging situations. In addition, to make students enhance reasoning skills, it is strongly requested that the tasks including the utilization of supplementary materials such as technological devices or manipulatives be dealt with in a lesson.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

개폐 개념의 높이 조절이 가능한 광선반 개발 연구 - 외부조도에 따른 광선반 성능평가 중심으로 (Research of the Development of a Height-adjustable light-shelf based on an Open and Closed Concept - Focusing on the light-shelf Performance Evaluation Depending on the External Illumination-)

  • 김수린;이행우;송석재;김용성
    • KIEAE Journal
    • /
    • 제17권3호
    • /
    • pp.83-90
    • /
    • 2017
  • Purpose: With the increase in the energy consumption in the building sector, many studies have recently been conducted to address this issue. Due to its efficiency, diverse studies on a light-shelf, which is a natural lighting system, are in progress. However, there has been no research on the external illumination that determines the performance of a light-shelf. Therefore, the present study aimed to prepare the external illumination standard for securing the lighting performance of a light-shelf through the light-shelf performance evaluation based on a 1:1 scale testbed, and to suggest a height-adjustable light-shelf based on an open and closed concept for the case in which the lighting performance of the light-shelf significantly deteriorates, by collecting the external illumination. Method: In this study, a 1:1 scale testbed was established for performance evaluation, and the external illumination standard for securing the performance of the light-shelf was prepared by comparing the lighting performance of the light-shelf depending on the open and closed condition of the light-shelf and the external illumination. Result: 1) In this study, a light-shelf that can be opened or closed depending on the external illumination was suggested. As a result, the prospect right can be secured by creating the condition where there is no light-shelf installation by moving the light-shelf to the top of the window when the lighting performance is not secured. 2) In the summer solstice, the external illuminations appropriate for lighting energy reduction were more than 75,000 lx and 60,000 lx for the light-shelf width of 0.3 m and 0.6 m, respectively. 3) In the intermediate period, the external illumination appropriate for lighting energy reduction was 60,000 lx. In the winter solstice, making the condition where there is no light-shelf installation by closing the light-shelf would be appropriate. 4) Based on the aforementioned results, the external illumination standard for the opening and closing of the height-adjustable light-shelf based on an open and closed concept suggested in this study was 60,000 lx, and the light-shelf with a width of 0.6 m would be advantageous for lighting energy reduction.

에너지 소산능력을 고려한 전단벽의 내진설계 (Earthquake Design Method for Structural Walls Based on Energy Dissipation Capacity)

  • 박홍근;엄태성
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.25-34
    • /
    • 2003
  • 최근 능력스펙트럼법, 직접변위기초설계법 등과 같은 성능에 기초한 내진 평가/설계법이 개발되어 사용되고 있다. 이들 방법은 구조물의 비선형 주기거동에 의한 에너지 소산능력을 고려함에 있어 부정확한 경험식에 의존하는 한계를 보이고 있다. 한편, 최근 연구에서 휨지배 철근콘크리트 부재에 대하여 여러 설계변수의 영향을 고려하여 주기거동에 의한 에너지 소산능력을 정확히 평가할 수 있는 방법이 개발되었다. 본 연구에서는 에너지 소산능력을 고려한 내진설계법에 대한 기초적인 연구로서, 최근 연구에서 개발된 에너지 소산능력 산정법을 이용한 철근콘크리트 전단벽 구조의 내진설계법을 개발하여, 기존의 내진설계법과 비교하였다. 제안된 설계법에서는 단면의 크기 및 형상, 축력, 철근비, 배근형태, 연성도 등과 같은 다양한 설계변수에 따른 에너지 소산능력의 변화를 정확히 고려하여 설계할 수 있다.

합리적 사출제품금형설계를 위한 지식형 통합설계시스템 (An Integrated Design System Using Knowledge-Based Approach for the Rational Design of Injection-Molded Part and Mold)

  • 허용정
    • 한국산학기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.115-119
    • /
    • 2001
  • 본 논문은 사출금형설계 관련 지식과 경험을 전산정보화 하고 유동해석프로그램과 기계적 성능예측 프로그램을 결합시켜 지식형 설계해석 및 평가시스템을 구축하였다. 지식형 설계시스템은 주어진 설계에 대해 유동해석프로그램을 구동시켜 열기계적 데이터베이스를 얻고, 필요에 따라 기계적 성능예측 프로그램을 수행시켜 설계의 최종적인 진단 및 평가를 수행하게 된다. 설계에 대한 평가 결과에 의하여, 만일 설계가 잘못된 것으로 판정이 되면 그에 해당하는 재설계 대안을 자동으로 생성하도록 하여 합리적인 설계가 가능하도록 하였다.

  • PDF

시뮬링크를 이용한 플래시메모리 저장장치 성능 모델링 (Performane Modeling of Flash Memory Storage Systems Using Simulink)

  • 민항준;박정수;이주일;민상렬;김강희
    • 대한임베디드공학회논문지
    • /
    • 제6권5호
    • /
    • pp.263-272
    • /
    • 2011
  • The complexity of flash memory based storage systems is high due to diverse host interfaces and other design choices such as mapping granularity, flash memory controller execution models and so on. Thus, it is possible that the actual performance after implementation is not consistent with the target performance. This paper demonstrates that the performance prediction of flash memory based storage systems is possible through performance modeling that takes into account various design parameters. In the performance modeling, the FTL, which is the core element of flash memory based storage systems, is modeled as a set of (copy-on-write) logs and their interactions. Also, the flash memory controller is modeled based on the classification proposed in the design of the Ozone flash controller. In this study, the performance model has been implemented using Simulink and experimental results are presented and analyzed.

The new criterion on performance-based design and application to recent earthquake codes

  • Azer A. Kasimzade;Emin Nematli;Mehmet Kuruoglu
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.11-20
    • /
    • 2023
  • "Performance-based design (PBD)" is based on designing a structure with choosing a performance target under design criteria to increase the structure's resistance against earthquake effect. The plastic hinge formation is determined as one of the fundamental data in finite elements nonlinear analysis to distinguish the condition of the structure where more significant potential damage could occur. If the number of plastic hinges in the structure is increased, the total horizontal load capability of the structure is increased, also. Theoretically, when the number of plastic hinges of the plane frame structure reaches "the degree of hyperstaticity plus one", the structure will reach the capability of the largest ultimate horizontal load. As the number of plastic hinges to be formed in the structure increases towards the theoretical plastic hinge number (TPHN), the total horizontal load capability of the structure increases, proportionally. In the previous studies of the authors, the features of examining the new performance criteria were revealed and it was formulated as follows "Increase the total number of plastic hinges to be formed in the structure to the number of theoretical plastic hinges as much as possible and keep the structure below its targeted performance with related codes". With this new performance criterion, it has been shown that the total lateral load capability of the building is higher than the total lateral load capability obtained with the traditional PBD method by the FEMA 440 and FEMA 356 design guides. In this study, PBD analysis results of structures with frame carrier systems are presented in the light of the Turkey Building Earthquake Code 2019. As a result of this study, it has been shown that the load capability of the structure in the examples of structures with frame carrier system increases by using this new performance criterion presented, compared to the results of the examination with the traditional PBD method in TBEC 2019.