• Title/Summary/Keyword: performance based design

Search Result 10,866, Processing Time 0.043 seconds

Estimation of Combining Ability of Production Traits from Diallel Crosses of Korean Native Chicken Strains (토종 종계 이면교배조합 시험에 따른 생산형질의 결합능력 추정)

  • Choi, Eun Sik;Bang, Min Hee;Kim, Ki Gon;Kwon, Jae Hyun;Jung, Ok Young;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • This study was conducted to develop a new synthetic breed of Korean native chicken. The combining ability and reciprocal effects for production traits were estimated on 1,157 hens from a $5{\times}5$ diallel cross-mating design using grand parent stock (GPS) lines of Korean native chicken. Body weight, viability, age at first egg laying, egg weight, and hen-day egg production were measured and analyzed. The results showed that the general combining ability (GCA) of the survival rate during laying periods was -9.6 to 11.1, with the highest value obtained in the W strain. Additionally, the GCA of the body weight at 12 weeks was -209.7 to 162.2, with the highest value obtained in the F strain. The GCA for age at fist egg laying was estimated to be -2.8 to 3.7, while the GCA of egg weight was -0.91 to 0.96, and the GCA of hen-day egg production was -4.9 to 6.0. In the estimation of specific combining ability, the YW combination showed the highest survival rate, FW showed the highest body weight at 12 weeks, and GW showed the highest hen-day egg production. The reciprocal effects were significantly different among crosses for almost all productivity traits. In identical breeding combinations, differences in ability were observed when the maternal or paternal breeds were switched. The mean value based on combining ability was higher in WY, WF, and GW combinations for survival rate; GF, HG, and HF combinations for body weight at 12 weeks; and GW, YW, and FW combinations for hen-day egg production. It is concluded that the GF and HF combinations, which have excellent growth performance and moderate survival rate, are the most desirable paternal parent stock (PS) strains, and the GW and FW combinations, which have great laying performance and moderate body weight, are the most desirable maternal PS strains.

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas (선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화)

  • Jeong, Haeyoung;Kim, Taeyong;Im, Eunmi;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

LIM Implementation Method for Planning Biotope Area Ratio in Apartment Complex - Focused on Terrain and Pavement Modeling - (공동주택단지의 생태면적률 계획을 위한 LIM 활용방법 - 지형 및 포장재 모델링을 중심으로 -)

  • Kim, Bok-Young;Son, Yong-Hoon;Lee, Soon-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.14-26
    • /
    • 2018
  • The Biotope Area Ratio (BAR) is a quantitative pre-planning index for sustainable development and an integrated indicator for the balanced development of buildings and outdoor spaces. However, it has been pointed out that there are problems in operations management: errors in area calculation, insufficiency in the underground soil condition and depth, reduction in biotope area after construction, and functional failure as a pre-planning index. To address these problems, this study proposes implementing LIM. Since the weights of the BAR are mainly decided by the underground soil condition and depth with land cover types, the study focused on the terrain and pavements. The model should conform to BIM guidelines and standards provided by government agencies and professional organizations. Thus, the scope and Level Of Detail (LOD) of the model were defined, and the method to build a model with BIM software was developed. An apartment complex on sloping ground was selected as a case study, a 3D terrain modeled, paving libraries created with property information on the BAR, and a LIM model completed for the site. Then the BAR was calculated and construction documents were created with the BAR table and pavement details. As results of the study, it was found that the application of the criteria on the BAR and calculation became accurate, and the efficiency of design tasks was improved by LIM. It also enabled the performance of evidence-based design on the terrain and underground structures. To adopt LIM, it is necessary to create and distribute LIM library manuals or templates, and build library content that comply with KBIMS standards. The government policy must also have practitioners submit BIM models in the certification system. Since it is expected that the criteria on planting types in the BAR will be expanded, further research is needed to build and utilize the information model for planting materials.

A Study on Relationship between Physical Elements and Tennis/Golf Elbow

  • Choi, Jungmin;Park, Jungwoo;Kim, Hyunseung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • Objective: The purpose of this research was to assess the agreement between job physical risk factor analysis by ergonomists using ergonomic methods and physical examinations made by occupational physicians on the presence of musculoskeletal disorders of the upper extremities. Background: Ergonomics is the systematic application of principles concerned with the design of devices and working conditions for enhancing human capabilities and optimizing working and living conditions. Proper ergonomic design is necessary to prevent injuries and physical and emotional stress. The major types of ergonomic injuries and incidents are cumulative trauma disorders (CTDs), acute strains, sprains, and system failures. Minimization of use of excessive force and awkward postures can help to prevent such injuries Method: Initial data were collected as part of a larger study by the University of Utah Ergonomics and Safety program field data collection teams and medical data collection teams from the Rocky Mountain Center for Occupational and Environmental Health (RMCOEH). Subjects included 173 male and female workers, 83 at Beehive Clothing (a clothing plant), 74 at Autoliv (a plant making air bags for vehicles), and 16 at Deseret Meat (a meat-processing plant). Posture and effort levels were analyzed using a software program developed at the University of Utah (Utah Ergonomic Analysis Tool). The Ergonomic Epicondylitis Model (EEM) was developed to assess the risk of epicondylitis from observable job physical factors. The model considers five job risk factors: (1) intensity of exertion, (2) forearm rotation, (3) wrist posture, (4) elbow compression, and (5) speed of work. Qualitative ratings of these physical factors were determined during video analysis. Personal variables were also investigated to study their relationship with epicondylitis. Logistic regression models were used to determine the association between risk factors and symptoms of epicondyle pain. Results: Results of this study indicate that gender, smoking status, and BMI do have an effect on the risk of epicondylitis but there is not a statistically significant relationship between EEM and epicondylitis. Conclusion: This research studied the relationship between an Ergonomic Epicondylitis Model (EEM) and the occurrence of epicondylitis. The model was not predictive for epicondylitis. However, it is clear that epicondylitis was associated with some individual risk factors such as smoking status, gender, and BMI. Based on the results, future research may discover risk factors that seem to increase the risk of epicondylitis. Application: Although this research used a combination of questionnaire, ergonomic job analysis, and medical job analysis to specifically verify risk factors related to epicondylitis, there are limitations. This research did not have a very large sample size because only 173 subjects were available for this study. Also, it was conducted in only 3 facilities, a plant making air bags for vehicles, a meat-processing plant, and a clothing plant in Utah. If working conditions in other kinds of facilities are considered, results may improve. Therefore, future research should perform analysis with additional subjects in different kinds of facilities. Repetition and duration of a task were not considered as risk factors in this research. These two factors could be associated with epicondylitis so it could be important to include these factors in future research. Psychosocial data and workplace conditions (e.g., low temperature) were also noted during data collection, and could be used to further study the prevalence of epicondylitis. Univariate analysis methods could be used for each variable of EEM. This research was performed using multivariate analysis. Therefore, it was difficult to recognize the different effect of each variable. Basically, the difference between univariate and multivariate analysis is that univariate analysis deals with one predictor variable at a time, whereas multivariate analysis deals with multiple predictor variables combined in a predetermined manner. The univariate analysis could show how each variable is associated with epicondyle pain. This may allow more appropriate weighting factors to be determined and therefore improve the performance of the EEM.

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

Rheological Characteristics of Hydrogen Fermented Food Waste and Review on the Agitation Intensity (음식물류폐기물 수소 발효액의 유변학적 특성과 교반강도 고찰)

  • Kim, Min-Gyun;Lee, Mo-Kwon;Im, Seong-Won;Shin, Sang-Ryong;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.41-50
    • /
    • 2017
  • The design of proper agitation system is requisite in biological waste treatment and energy generation plant, which is affected by viscosity, impeller types, and power consumption. In the present work, hydrogen fermentation of food waste was conducted at various operational pHs (4.5~6.5) and substrate concentrations (10~50 g Carbo. COD/L), and the viscosity of fermented broth was analyzed. The $H_2$ yield significantly varied from 0.51 to $1.77mol\;H_2/mol\;hexose_{added}$ depending on the pH value, where the highest performance was achieved at pH 5.5. The viscosity gradually dropped with shear rate increase, indicating a shear thinning property. With the disintegration of carbohydrate, the viscosity dropped after fermentation, but it did not change depending on the operational pH. At the same pH level, the $H_2$ yield was not affected much, ranging $1.40{\sim}1.86mol\;H_2/mol\;hexose_{added}$ at 10~50 g Carbo. COD/L. The zero viscosity and infinite viscosity of fermented broth increased with substrate concentrations, from 10.4 to $346.2mPa{\cdot}s$, and from 1.7 to $5.3mPa{\cdot}s$, respectively. There was little difference in the viscosity value of fermented broth at 10 and 20 g Carbo. COD/L. As a result of designing the agitation intensity based on the experimental results, it is expected that the agitation intensity can be reduced during hydrogen fermentation. The initial and final agitation intensity of 30 g Carbo. COD/L in hydrogen fermentation were 26.0 and 10.0 rpm, respectively. As fermentation went on, the viscosity gradually decreased, indicating that the power consumption for agitation of food waste can be reduced.

A Study on the Present Condition of Four-Year University Curriculum for Introducing NCS Landscape Architecture (NCS 조경 분야 적용을 위한 4년제 대학 교육과정 현황분석)

  • Lee, Chang-Hun;Kim, Kyou-Sub;Lee, Won-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.134-147
    • /
    • 2019
  • The purpose of this study was to analyze the functional unit system of NCS landscape field for correction and supplementation of NCS landscape field and the contents of the four-year college landscape course subject. First, 24 unconsolidated four-year universities were selected, and FGI was conducted and verified for 816 courses in 24 universities. The results of the study are summarized as follows, with three sections three, nine divisions and 65 sub-category. First, landscape design subjects accounted for 40.0% of the subjects organized by four-year universities. In addition, the ratio of 12.9% for ecological landscape, 11.3% for landscape construction, 10.2% for others, 10.0% for landscape information, 6.6% for landscape culture and 3.7% for landscape management was surveyed. Balanced and efficient modification and reinforcement of NCS is required in the future. Second, 10(18.9%) units with matching NCS performance criteria and educational objectives were found to be capable of different units(18.9%), 15(28.3%), and 37subjects with inconsistent NCS unit capability (56.9%). Third, looking at the criteria for the reference of each unit of capability presented by the NCS, it is deemed that one unit of capability should be organized separately to improve the practical ability, since it includes the contents of basic knowledge learning. Fourth, the objectives pursued on the basis of the contents of the NCS capability unit and four-year college curriculum were developed by focusing on the development of unit capabilities in the field of landscape construction and landscape management compared to the field of landscape design. It has been shown that a balance is needed for future development. This study is intended to put forward further research that re-examine specific curriculum assessment criteria that have not been classified in the course of classifications based on the curriculum handbook, which excludes interferences from each school.

Design and Implementation of Game Server using the Efficient Load Balancing Technology based on CPU Utilization (게임서버의 CPU 사용율 기반 효율적인 부하균등화 기술의 설계 및 구현)

  • Myung, Won-Shig;Han, Jun-Tak
    • Journal of Korea Game Society
    • /
    • v.4 no.4
    • /
    • pp.11-18
    • /
    • 2004
  • The on-line games in the past were played by only two persons exchanging data based on one-to-one connections, whereas recent ones (e.g. MMORPG: Massively Multi-player Online Role-playings Game) enable tens of thousands of people to be connected simultaneously. Specifically, Korea has established an excellent network infrastructure that can't be found anywhere in the world. Almost every household has a high-speed Internet access. What made this possible was, in part, high density of population that has accelerated the formation of good Internet infrastructure. However, this rapid increase in the use of on-line games may lead to surging traffics exceeding the limited Internet communication capacity so that the connection to the games is unstable or the server fails. expanding the servers though this measure is very costly could solve this problem. To deal with this problem, the present study proposes the load distribution technology that connects in the form of local clustering the game servers divided by their contents used in each on-line game reduces the loads of specific servers using the load balancer, and enhances performance of sewer for their efficient operation. In this paper, a cluster system is proposed where each Game server in the system has different contents service and loads are distributed efficiently using the game server resource information such as CPU utilization. Game sewers having different contents are mutually connected and managed with a network file system to maintain information consistency required to support resource information updates, deletions, and additions. Simulation studies show that our method performs better than other traditional methods. In terms of response time, our method shows shorter latency than RR (Round Robin) and LC (Least Connection) by about 12%, 10% respectively.

  • PDF