• 제목/요약/키워드: performance based design

검색결과 10,741건 처리시간 0.034초

Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China

  • Jiang, Huanjun;Lu, Xilin;Zhu, Jiejiang
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.545-560
    • /
    • 2012
  • Design codes provide the minimum requirements for the design of code-compliant structures to ensure the safety of the life and property. As for code-exceeding buildings, the requirements for design are not sufficient and the approval of such structures is vague. In mainland China in recent years, a large number of code-exceeding tall buildings, whether their heights exceed the limit for the respective structure type or the extent of irregularity is violated, have been constructed. Performance-based seismic design (PBSD) approach has been highly recommended and become necessary to demonstrate the performance of code-exceeding tall buildings at least equivalent to code intent of safety. This paper proposes the general methodologies of performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China. The PBSD approach proposed here includes selection of performance objectives, determination of design philosophy, establishment of design criteria for structural components and systems consistent with the desirable and transparent performance objectives, and seismic performance analysis and evaluation through extensive numerical analysis or further experimental study if necessary. The seismic analysis and design of 101-story Shanghai World Financial Center Tower is introduced as a typical engineering example where the PBSD approach is followed. The example demonstrates that the PBSD approach is an appropriate way to control efficiently the seismic damage on the structure and ensure the predictable and safe performance.

성능위주설계를 위한 화재감지기배치의 공학적연구 (Automatic Fire Detector Spacing Calculation for Performance Based Design)

  • 박동하
    • 한국화재소방학회논문지
    • /
    • 제24권1호
    • /
    • pp.15-23
    • /
    • 2010
  • 현재의 화재안전기준에서 규정하는 화재감지기의 배치방법은 면적에 따라 규정된 숫자를 적정하게 배치하는 수준이다. 이 기준은 과학적인 근거는 가지고 있지 못하다. 외국의 기준을 도입하여 그에 따라서 설치하고 있을 뿐이다. 소방시설을 설계하는 방법에는 화재안전기준과 같이 명문화 된 규정에 따르는 규범위주설계(Prescriptive-based)와 화재역학, 구조역학, 재료역학, 유체역학, 열역학 등 공학적 지식을 바탕으로 하는 성능위주설계(Performance-based design)가 있다. 현재로서는 성능위주설계가 활성화 되지 않았지만, 최근 소방시설공사업법은 성능위주설계방법을 이용하여 소방시설을 설계 할 수 있도록 개정('05. 8. 4)되었으며 그 시행령('07, 1. 24)에서 성능위주설계를 적용할 특정소방대상물의 범위를 정하고 있다. 이러한 시점에서 자동화재탐지설비의 화재감지기를 최적의 위치 및 거리에 설치하기 위하여 그에 대한 공식의 도입과 공식을 Software로 계산할 수 있도록 시뮬레이터를 제작하여 계산하고 규범위주설계에 따라 배치한 화재감지기의 상태와 비교 분석하며 향후 성능위주설계 방법으로서 정착시키기 위하여 연구를 시도하였다.

Performance-based wind design framework proposal for tall buildings

  • Alinejad, Hamidreza;Kang, Thomas H.K.;Jeong, Seung Yong
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.283-292
    • /
    • 2021
  • Performance-based seismic design (PBSD) is currently used for retrofitting of older buildings and the design of new buildings. Whereas, application of performance-based design for wind load is still under development. The tendency has been in the codes to increase wind hazard based on recent recorded events. Since tall buildings are highly susceptible to wind load, necessity for developing a framework for performance-based wind design (PBWD) has intensified. Only a few guidelines such as ASCE (2019) provide information on using PBWD as an alternative for code prescriptive wind design. Though wind hazards, performance objectives, analysis techniques, and acceptance criteria are explained, no recommendations are provided for several aspects like how to select a proper level of wind hazard for each target performance criterion. This paper is an attempt to explain current design philosophy for wind and seismic loads and inherent connection between the components of PBSD for development of a framework for PBWD of tall buildings. Recognizing this connection, a framework for PBWD based on limits set for serviceability and strength is also proposed. Also, the potential for carrying out PBWD in line with ASCE 7-16 is investigated and proposed in this paper.

직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가 (Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method)

  • 정인규;박순응;김동혁
    • 한국공간구조학회논문집
    • /
    • 제12권3호
    • /
    • pp.63-70
    • /
    • 2012
  • 본 연구에서는 변위기반 성능설계 개념에 의해 기존 철근콘크리트 기둥과 콘크리트에 강재를 매입한 SRC 합성기둥에 대하여 최대 설계지진 가속도에 대한 내진성능개선의 성능설계을 비교하였다. SRC 합성기둥은 구조물의 강도를 증가시킬 뿐 아니라 연성도를 증가시키는 효과가 있다. SRC 합성기둥의 단면은 H형 강재와 원형의 중공 강관을 매입한 형태로 구성되어 있다. SRC 합성기둥에 대한 P-M상관도와 단면 공칭휨모멘트를 분석하고 이를 바탕으로 SRC 합성기둥에 대한 설계 변위 추정을 위해 변위기반 내진 설계 알고리즘을 제시하였다. 성능기반설계에 의한 성능개선설계를 위하여 목표성능변위 및 설계지진가속도 조건에 대해 직접변위 기반 설계방법 및 변위계수법에 의한 내진성능개선 설계 방법을 제시하였다. SRC 합성기둥은 기존 RC 기둥과 비교하여 성능개선 설계 결과 변위 연성비 및 변위성능에서 크게 개선된 성능설계 결과를 나타내었다.

설계변수 표본에 근거한 다물체계 성능의 통계적 예측 (Statistical Performance Estimation of a Multibody System Based on Design Variable Samples)

  • 최찬규;유홍희
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1449-1454
    • /
    • 2009
  • The performance variation of a multibody system is affected by a variation of various design variables of the system. And the effects of design variable variations on the performance variation must be considered in design of a multibody system. Accordingly, a variation analysis of a multibody system needs to be conducted in design of a multibody system. For a variation analysis of a performance, population mean and variance which are called statistical parameters of design variables are needed. However, an evaluation of statistical parameters of design variables is impossible in many practical cases. Therefore, an estimation of statistical parameters of the performance based on sample mean and variance which are called statistic of design variables is needed. In this paper, the variation analysis method for a multibody system based on design variable samples was proposed. And, using the proposed method, a variation analysis of the vehicle ride comfort based on sample statistic of design variables was conducted.

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

A New Paradigm for Wind Design

  • M. Burton;M. Tatarsky;I. Ashcroft
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.363-368
    • /
    • 2022
  • For taller buildings with unconventional architecture, refined structural systems or in geographical areas with high wind conditions, performance-based design can be seen as an enhanced design process and is either a supplement to, or alternative to a prescriptive code-based design. The ultimate goal of Performance-Based Wind Design (PBWD) is to result in a building that better addresses key goals of performance over the buildings full life cycle. Major innovations around the use of a PBWD approach include nonlinear dynamic analysis for wind design, limited inelasticity in the main wind force resisting system elements, and system-based performance criteria. This paper discusses potential considerations and benefits made when using a performance-based approach, in addition to the general practicality of use, for the structural design on a few key tall buildings.

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz;Seungho Chun;Mohamed Noureldin;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.173-183
    • /
    • 2024
  • This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

Deformation-based seismic design of concrete bridges

  • Gkatzogias, Konstantinos I.;Kappos, Andreas J.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1045-1067
    • /
    • 2015
  • A performance-based design (PBD) procedure, initially proposed for the seismic design of buildings, is tailored herein to the structural configurations commonly adopted in bridges. It aims at the efficient design of bridges for multiple performance levels (PLs), achieving control over a broad range of design parameters (i.e., strains, deformations, ductility factors) most of which are directly estimated at the design stage using advanced analysis tools (a special type of inelastic dynamic analysis). To evaluate the efficiency of the proposed design methodology, it is applied to an actual bridge that was previously designed using a different PBD method, namely displacement-based design accounting for higher mode effects, thus enabling comparison of the alternative PBD approaches. Assessment of the proposed method using nonlinear dynamic analysis for a set of spectrum-compatible motions, indicate that it results in satisfactory performance of the bridge. Comparison with the displacement-based method reveals significant cost reduction, albeit at the expense of increased computational effort.

도시철도 지하박스 구조물의 내진성능 보강설계 연구 (A Study for the Performance Based Strengthening Design of Underground Box Structure in Urban Railway)

  • 권민호;김시격;김기홍;장영두;김진호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1143-1148
    • /
    • 2011
  • In this study, seismic structural reinforcement are carried out, based on the estimated seismic performance of underground box structures in urban railway, and displacement based design method was developed to enhance seismic performance of structures. New seismic reinforcement design method is proposed and compared with existing design methods. And presented an overview of the developed design methodology through a design example to verify the validity of that methods.

  • PDF