• Title/Summary/Keyword: perforation parameters

Search Result 47, Processing Time 0.024 seconds

Buckling analysis of perforated nano/microbeams with deformable boundary conditions via nonlocal strain gradient elasticity

  • Ugur Kafkas;Yunus Unal;M. Ozgur Yayli;Busra Uzun
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.339-353
    • /
    • 2023
  • This work aims to present a solution for the buckling behavior of perforated nano/microbeams with deformable boundary conditions using nonlocal strain gradient theory (NLSGT). For the first time, a solution that can provide buckling loads based on the non-local and strain gradient effects of perforated nanostructures on an elastic foundation, while taking into account both deformable and rigid boundary conditions. Stokes' transformation and Fourier series are used to realize this aim and determine the buckling loads under various boundary conditions. We employ the NLSGT to account for size-dependent effects and utilize the Winkler model to formulate the elastic foundation. The buckling behavior of the perforated nano/microbeams restrained with lateral springs at both ends is studied for various parameters such as the number of holes, the length and filling ratio of the perforated beam, the internal length, the nonlocal parameter and the dimensionless foundation parameter. Our results indicate that the number of holes and filling ratio significantly affect the buckling response of perforated nano/microbeams. Increasing the filling ratio increases buckling loads, while increasing the number of holes decreases buckling loads. The effects of the non-local and internal length parameters on the buckling behavior of the perforated nano/microbeams are also discussed. These material length parameters have opposite effects on the variation of buckling loads. This study presents an effective eigenvalue solution based on Stokes' transformation and Fourier series of the restrained nano/microbeams under the effects of elastic medium, perforation parameters, deformable boundaries and nonlocal strain gradient elasticity for the first time.

CBCT-based assessment of root canal treatment using micro-CT reference images

  • Lamira, Alessando;Mazzi-Chaves, Jardel Francisco;Nicolielo, Laura Ferreira Pinheiro;Leoni, Graziela Bianchi;Silva-Sousa, Alice Correa;Silva-Sousa, Yara Terezinha Correa;Pauwels, Ruben;Buls, Nico;Jacobs, Reinhilde;Sousa-Neto, Manoel Damiao
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.245-258
    • /
    • 2022
  • Purpose: This study compared the root canal anatomy between cone-beam computed tomography (CBCT) and micro-computed tomography (micro-CT) images before and after biomechanical preparation and root canal filling. Materials and Methods: Isthmus-containing mesial roots of mandibular molars(n=14) were scanned by micro-CT and 3 CBCT devices: 3D Accuitomo 170 (ACC), NewTom 5G (N5G) and NewTom VGi evo (NEVO). Two calibrated observers evaluated the images for 2-dimensional quantitative parameters, the presence of debris or root perforation, and filling quality in the root canal and isthmus. The kappa coefficient, analysis of variance, and the Tukey test were used for statistical analyses(α=5%). Results: Substantial intra-observer agreement (κ=0.63) was found between micro-CT and ACC, N5G, and NEVO. Debris detection was difficult using ACC (42.9%), N5G (40.0%), and NEVO (40%), with no agreement between micro-CT and ACC, N5G, and NEVO (0.05<κ<0.12). After biomechanical preparation, 2.4%-4.8% of CBCT images showed root perforation that was absent on micro-CT. The 2D parameters showed satisfactory reproducibility between micro-CT and ACC, N5G, and NEVO (intraclass correlation coefficient: 0.60-0.73). Partially filled isthmuses were observed in 2.9% of the ACC images, 8.8% of the N5G and NEVO images, and 26.5% of the micro-CT images, with no agreement between micro-CT and ACC, and poor agreement between micro-CT and N5G and NEVO. Excellent agreement was found for area, perimeter, and the major and minor diameters, while the roundness measures were satisfactory. Conclusion: CBCT images aided in isthmus detection and classification, but did not allow their classification after biomechanical preparation and root canal filling.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment (높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.

Three-dimensional Numerical Study on Acoustic Performance of Large Splitter Silencers (대형 스플리터 소음기 성능에 대한 3차원 수치해석적 연구)

  • Baek, Seonghyeon;Lee, Changheon;Gwon, Daehun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Acoustic performance of splitter silencers was investigated by using 3-dimensional commercial software and experiments. Flow resistivity of sound absorbing material was indirectly estimated by using an impedance tube setup and a curve fitting method. In addition the acoustic impedance of perforated plate was determined by an empirical formulation. Such properties have been used as input parameters in the commercial software. The prediction for a splitter silencer with 1000 mm length was compared with the experimental result. The numerical method is then applied to identify the effects of number of splitters, length of splitters, absorptive material density, and porosity of a perforated plate on the performance of the splitter silencers. As the number and length of splitter increases, the acoustic performance significantly increases. Although the increase of density of absorptive material also increase the acoustic performance, a change in the density over a certain level hardly affect it. The increase of porosity will enhance the performance especially at higher frequencies.

Compaction process in concrete during missile impact: a DEM analysis

  • Shiu, Wenjie;Donze, Frederic-Victor;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.329-342
    • /
    • 2008
  • A local behavior law, which includes elasticity, plasticity and damage, is developed in a three dimensional numerical model for concrete. The model is based on the Discrete Element Method (DEM)and the computational implementation has been carried out in the numerical Code YADE. This model was used to study the response of a concrete slab impacted by a rigid missile, and focuses on the extension of the compacted zone. To do so, the model was first used to simulate compression and hydrostatic tests. Once the local constitutive law parameters of the discrete element model were calibrated, the numerical model simulated the impact of a rigid missile used as a reference case to be compared to an experimental data set. From this reference case, simulations were carried out to show the importance of compaction during an impact and how it expands depending on the different impact conditions. Moreover, the numerical results were compared to empirical predictive formulae for penetration and perforation cases, demonstrating the importance of taking into account the local compaction process in the local interaction law between discrete elements.

On bending analysis of perforated microbeams including the microstructure effects

  • Abdelrahman, Alaa A.;Abd-El-Mottaleb, Hanaa E.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.765-779
    • /
    • 2020
  • This article presents a nonclassical size dependent model based on the modified couple stress theory to study and analyze the bending behavior of perforated microbeams under different loading patterns. Modified equivalent material and geometrical parameters for perforated beam are presented. The modified couple stress theory with one material length scale parameter is adopted to incorporate the microstructure effect into the governing equations of perforated beam structure. The governing equilibrium equations of the perforated Timoshenko as well as the perforated Euler Bernoulli are developed based on the potential energy minimization principle. The Poisson's effect is included in the governing equilibrium equations. Regular square perforation configuration is considered. Based on Fourier series expansion, closed forms for the bending deflection and the rotational displacements are obtained for simply supported perforated microbeams. The proposed methodology is validated and compared with the available results in the literature and an excellent agreement is detected. Numerical results demonstrated the applicability of the proposed methodology to investigate the bending behavior of regularly squared perforated beams incorporating microstructure effect under different excitation patterns. The obtained results are significantly important for the design and production of perforated microbeam structures.

Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges

  • Kim, Hyoung-Il;Wilson, Brian C.
    • Journal of Gastric Cancer
    • /
    • v.20 no.4
    • /
    • pp.355-375
    • /
    • 2020
  • Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.

A non-dimensional theoretical approach to model high-velocity impact on thick woven plates

  • Alonso, L.;Garcia-Gonzalez, D.;Navarro, C.;Garcia-Castillo, S.K.
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.717-737
    • /
    • 2021
  • A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.