• Title/Summary/Keyword: perforated pattern

Search Result 46, Processing Time 0.024 seconds

Experimental Study of Flow Fields around a Perforated Breakwater

  • Ariyarathne, H.A. Kusalika S.;Chang, Kuang-An;Lee, Jong-In;Ryu, Yong-Uk
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • This study investigates flow fields and energy dissipation due to regular wave interaction with a perforated vertical breakwater, through velocity data measurement in a two-dimensional wave tank. As the waves propagate through the perforated breakwater, the incoming wave energy is reflected back to the ocean, dissipated due to very turbulent flows near the perforations and inside the chamber, and transmitted through the perforations of the breakwater. This transmitted energy is further reduced due to the presence of the perforated back wall. Hence most of the energy is either reflected or dissipated in the vicinity of the structure, and only a small amount of the incoming wave energy is transmitted through the structure. In this study, particle image velocimetry (PIV) technique was employed to measure two-dimensional instantaneous velocity fields in the vicinity of the structure. Measured velocity data was treated statistically, and used to calculate mean flow fields, turbulence intensity and turbulent kinetic energy. For investigation of the flow pattern, time-averaged mean velocity fields were examined, and discussed using the cross-sections through slot and wall for comparison. Flow fields were obtained and compared for various cases with different regular wave conditions. In addition, turbulent kinetic energy was estimated as an approach to understand energy dissipation near the perforated breakwater. The turbulent kinetic energy was distributed against wave height and wave period to see the dependence on wave conditions.

Flow Distribution in an Electrostatic Precipitator with a Perforated Plate (타공판에 따른 전기집진기 내의 유동분포)

  • Kim, Dong-uk;Jung, Sang-Hyun;Shim, Sung-Hoon;Kim, Jin Tae;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.147-152
    • /
    • 2019
  • Electrostatic precipitator that shows a good performance for the removal of particulate matter is important for controlling emissions from industrial facilities and power plants. The efficiency of the electrostatic precipitator on the removal of particulate matter is highly affected by the flow pattern inside the electrostatic precipitator. A number of studies have been conducted to obtain uniform flow distribution inside electrostatic precipitators. An electrostatic precipitator (ESP) with a length of 3.5 m and a height of 0.875 m was designed and installed in this study. The ESP included an inlet duct, diffuser, body, and contractor. Three perforated plates were installed in the diffuser of the ESP. Five pitot tubes were installed vertically and used to measure flow distribution in the cross section of the ESP body. Root mean square deviation value (RMS%) was used to examine the flow distribution inside the ESP when the perforated plates were installed in the diffuser. Flow distribution was also investigated in relation to the porosity of the perforated plate. The results showed that the perforated plates improved greatly the flow distribution inside the electrostatic precipitator. In addition, the most uniform flow distribution was found with 40%, 50%, and 50% porous perforated plates located from the inlet of the diffuser.

Mechanism of Morphological Transition from Lamellar/Perforated Layer to Gyroid Phases

  • Ahn, Jong-Hyun;Zin, Wang-Cheol
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.152-156
    • /
    • 2003
  • We investigated epitaxial relations of phase transitions between the lamellar (L), hexagonally perforated layers (HPL), and gyroid (G) morphologies in styrene-isoprene diblock copolymer (PSI) and polyisoprene (PI)/PSI blend using rheology and small angle X-ray scattering (SAXS) techniques. In HPLlongrightarrowG transitions, six spot patterns of G phase were observed in two-dimensitional SAXS pattern. On the other hand, in direct L-longrightarrowG transition without appearance of HPL phase, the polydomain patterns of G phase were observed. From present study, it was understood that direct LlongrightarrowG transition of blend may be suppressed by high-energy barrier of transition and mismatches in domain orientation between epitaxially related lattice planes.

Effects of Chamfered Perforated Plate on Pressure Loss Characteristics (챔퍼가 적용된 타공판의 압력 강하 특성에 대한 연구)

  • You, Kyeongsik;Lee, Hyungyu;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.779-786
    • /
    • 2019
  • Effects of chamfered perforated plate on pressure loss characteristics were studied with CFD analysis. Both inlet chamfer angle and outlet chamfer angle were considered. Perforated patterns were compared by pressure loss coefficient in certain porosity and Reynolds number. Reynolds number effects were studied for several chamfer angles and plate thickness. As the inlet chamfer angle was increased, the pressure loss coefficient was decreased until the certain angle and reversed to increase. In the outlet chamfered shape cases, the pressure loss coefficient was increased with chamfer angle. Effects of pattern shapes and Reynolds number on pressure loss characteristics were negligible with different chamfer angles and thickness studied in this paper.

An Experimental Study on the Propagation Characteristics of the Impulse Noise from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성에 관한 실험적 연구)

  • Heo, Sung-Wook;Lee, Myeong-Ho;Lee, Dong-Hoon;Hwang, Yoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube facility. The pressure amplitudes and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are measured and analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the experiments. the impulse waves are visualized by a Schlieren optical system for the purpose of understanding their propagation characteristics. The results obtained show that for the near sound field the impulse noise strongly propagates toward the pipe axis, but for the far sound field the impulse noise uniformly propagates toward the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. For this non-directivity in the far sound field, it is shown that the perforated pipe has little performance to suppress the impulse noise.

An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells (패각을 사용한 철근콘크리트 유공보의 공학적 특성에 관한 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • This is an experimental study on the engineering characteristics of perforated reinforced concrete beams with shells. In the material matter of this study, the water cement ratio put 60%, the ratio of substitution of oyster shells to fine aggregate 30%. And in the structural matter, the form of opening put circle and square, the size of opening as the radius and the length of it changed from one to three times of the beam depth with a change presence and absence of reinforced steel around opening. All thirteen reinforced concrete beam tests composed one standard beam and twelve six beams with the circle and square opening were tested in shear strength under two points loading and compared and analyzed the characteristics of test beams under the same conditions one another. The results of the study showed as followed. 1) The initial crack load value of the opening test beams is similar the standard beam but the maximum load value decreased with increase in proportion of the opening size, in the square opening than the circle opening and in the absence than the presence of reinforced steel. 2) As the difference between the circle opening and the square opening beams is represented 2.17~9.8% in the maximum load value and the load capacity of the square opening suddenly decrease than it of the circle opening, it is judged because of the shortage of concrete section, the concentration of the stress in the corner of the square opening and material influence of shell substitution. 3) The failure figure such as the pattern of the crack and so on is represented brittle failure as the opening size is the bigger and the ratio of substitution is higher because of the lack material properties.

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

Correlation Analysis of Design Pattern and Emotional Design Characteristics on the Building Facade (건물 파사드의 디자인 패턴과 감성 디자인 특성의 상관관계 분석)

  • Oh, Youngeun;Lee, Hyunsoo
    • Design Convergence Study
    • /
    • v.14 no.2
    • /
    • pp.51-65
    • /
    • 2015
  • The purpose of this study is to derive the design characteristics of the pattern, which can effectively support the building facade design and to analyze the correlation of their characteristics. This paper deals with five different design patterns suggested by Ben Pell. They are the applied pattern, perforated pattern, layered pattern, casting pattern, and tiled pattern. This paper analyzes the design characteristics of the applied pattern, which shows the highest point in the previous survey. The 'continuous' has a high emotional correlation. The high correlation with the emotional word 'continuous' and 'regular' was derived. The final emotional design characteristic is 'continuous-discontinuous', and 'irregular-regular'. and these emotional words can be summarized as the relatively highest correlation. In this paper, it is worth analyzing design characteristics of building facade by a support of digital technology and discussing utilization of design characteristics derived.

Porous modeling for the prediction of pressure drop through a perforated strainer (타공형 스트레이너의 압력강하 예측을 위한 다공성모델링)

  • Jung, Il-Sun;Park, Jae-Hyun;Bae, Jae-Hwan;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.358-367
    • /
    • 2013
  • In the present paper, we apply a porous modelling technique to accurately predict the pressure drop through the strainer by replacing all or some of the filter composed of perforated plates with porous media and there imposing the streamwise and transverse loss coefficients required according to the Forchheimer law and then confirm its effectiveness. At first, the streamwise coefficient is obtained by performing a simple simulation on the pipe flow mimicking the hole flow. Subsequently, the transverse coefficient is obtained by setting a unit pattern to have common flow loss characteristics with the repeated shape patterns in the filter, then performing numerical simulations on the prototype and porous model of the unit shape pattern, and finally comparing their results of pressure drop. To validate the applied modeling technique, we perform the numerical simulation with the two specified loss coefficients on a whole shape of strainer and compare the modeling results with those of the corresponding prototype numerical simulation. Comparison indicates that the modeling technique can predict the pressure drop and flow characteristics comparatively accurately and save the number of nodes closely related to the computational cost (CPU and memory) by about 3~4 times compared with the prototype simulation.