• 제목/요약/키워드: perforated panel

검색결과 48건 처리시간 0.027초

Prefabricated-HSPRCC panels for retrofitting of existing RC members-a pioneering study

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.1-25
    • /
    • 2015
  • The main goal of this study was to develop a convenient strengthening technique for retrofitting of reinforced concrete members. For this purpose a new retrofitting material so-called prefabricated-HSPRCC (high performance steel plate reinforced cementitious composite) panel was developed by using high performance concrete and perforated steel plate. Prefabricated-HSPRCC composes advantages of steel and high performance concrete. The prefabricated-HSPRCC panels were either only bonded on the specimens using epoxy mortar or anchored to the specimen by steel bolts as well as bonding. Effect of different variations such as prefabricated-HSPRCC panel thicknesses, steel plate thicknesses, puncture orientation of perforated steel plate, existence of anchorage etc. were studied through a simple experimental work. The behaviour of the specimens under vertical point load was also studied by using simple mechanics. The retrofitted specimens were found to exhibit much better performance both in terms of strength and deformation capability. The anchorage application was found to positively affect this improved performance. Furthermore, as a result of the tests the best parameters of prefabricated-HSPRCC plate for improving strength and deformation capacities were determined.

흡열다공판을 이용한 공기식 태양열 집열 유닛에 관한 연구(실험 및 수치해석적 연구) (Study on Solar Air Collector with Perforated Endothermic Panel(Experimental and Numerical Study))

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.732-739
    • /
    • 2011
  • 최근 몇 년간 에너지 위기에 대한 우려가 급격히 증가하고 있으며, 방대한 에너지소비에 따른 환경오염도 큰 문제로 대두되고 있다. 사회적으로 에너지 위기가 고조되고 있는 가운데 새로운 에너지나 신재생에너지에 대한 관심이 증가하고 있다. 본 연구는 이러한 문제를 해결하기 위한 하나의 해결책으로 건물의 난방에 태양열을 적극적으로 이용하기 위한 태양열 흡열다공판을 외벽에 설치하여 실내의 온도를 상승시키기 위한 실험 논문이다. 그리고 태양전지판에 의해 구동되는 실내 공기 순환 팬은 실내의 대류 열전달을 상승시키기 위해 이용된다. 본 연구는 실험과 수치해석으로 구성되어져 있다. 본 연구의 실험결과에서는 입구 공기 온도가 45[$^{\circ}C$]까지 상승하는 것을 알 수 있었다. 이 온도는 겨울철 동안 실내 공기를 상승시키기에 충분하다. 그리고 수치해석을 이용하여 팬의 대류상승효과를 입증하였다.

흡음형 방음벽의 내부 구성에 따른 흡음특성 (Sound Absorbing Characteristics According to Interior Configuration of Noise Barrier)

  • 박진규;김상헌;김관주;박희준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2003
  • This study is put a focus on the identification of sound characteristics according to the interior configuration of sound absorption material and air gap. Noise barrier is general consists of front perforated panel, air layer, sound absorption material, air gap and back plate. Noise barrier is required to the NRC value of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of the perforated panel and the efficiency of the absorbing material. This study has observed the effect of opening ratio and hole size, the increase of sound absorbing performance by the configurations of sound absorption material and air gap. New designed noise barrier is achieved the acoustical performance of 0.87 the measurement in a reveration room.

  • PDF

가상현실 기반 사용자 참여형 타공패널 파사드 설계 방법론 (User-Participated Design Method for Perforated Metal Facades using Virtual Reality)

  • 장도진;김성준;김성아
    • 대한건축학회논문집:계획계
    • /
    • 제36권4호
    • /
    • pp.103-111
    • /
    • 2020
  • Perforated metal sheets are used as panels of facades for controlling environmental factors while ensuring user's visibility. Despite their functional potentials, only a specific direction of facades or an orientation of a building was considered in the relevant studies. This study proposed a design methodology for the perforated panel facades that reflects the location on the facades and the user's requirements. The optimization of quantitative and qualitative performance is achieved through communication between designers and users in a VR system. In optimizing quantitative performances, designers use machine learning techniques such as clustering and genetic algorithm to allocate optimal panels on the facades. In optimizing qualitative performances, through the VR system, users intervene in evaluating performances whose preferences are depending on them. The experiment using the office project showed that designers were able to make decisions based on clustering using GMM to optimize multiple quantitative performances. The gap between the target and final performance could be narrowed by limiting the types of perforated panels considering mass customization. In assessing visibility as a qualitative performance, users were able to participate in the design process using the VR system.

Development of eco-friendly and lightweight insulation panels for offshore plant

  • Jung, Jae-Deok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Joo, Won-Ho;Kim, Sung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.554-562
    • /
    • 2016
  • Recently, regulations pertaining to the noise and vibration environment of offshore plants have been strengthened. For example, the NORSOK standards have been applied, which are very strict regulations that are comparable to those applied to passenger ships. Furthermore, the use of porous materials, such as those used in most of the current insulating panels, has been forbidden. Therefore, honeycomb-backed Micro-Perforated Plates (MPPs) are now regarded as next-generation absorber materials. This paper reports the results of parametric studies that were performed using numerical methods to determine the effect of the thickness on the performance of a honeycomb panel and the effect of the perforation ratio on the MPP performance. The numerical results were verified through experiments. Finally, we propose a combined honeycomb/MPP panel where the MPP is placed between upper and lower honeycomb panels and one end surface is also replaced with an MPP.

공명형 흡음기의 설계인자에 관한 연구 (A Study on the Design Parameter of a Resonance type Absorber)

  • 송화영;이영철;이선기;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.964-968
    • /
    • 2007
  • A helmholtz resonator has been widely used for the purpose of suppressing low frequency noises propagated from various heat and fluid machineries. However, the resonator has demerits that the absorption bandwidth at resonance frequency is very small and a large cavity is necessary. In order to overcome these problems, in this paper, a resonator with perforated panels at the neck and/or in the cavity is proposed. The absorption performances of resonators are measured by two-microphone method and are estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients are agreed well with the corresponding values from the transfer matrix method. By introducing perforated panels at the neck of a resonator, it is shown that the absorption performances and bandwidth have a significant improvement.

  • PDF

가정용 레인지 후드의 소음저감에 관한 연구 (A Research on the Noise Reduction of Range Hood for Household)

  • 홍병국;송화영;이동훈;이창근;김동윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.449-452
    • /
    • 2005
  • This paper introduces a study for the noise reduction of a range hood for household. Generally, range hoods have a built-in sirocco fan from which squawky noises are generated. Though the squawky noises have low noise level, these kinds of noises make most of the users nervous. For the purpose of noise reduction, in this study, a perforated plate system is installed in the fan housing of range hood. From the experimental results, it is confirmed that the noise level omitted front the range hood is decreased above 2dB(A) in all frequency regions due to the effect of noise reduction by perforated panel system.

  • PDF