• Title/Summary/Keyword: perfect conductor

Search Result 54, Processing Time 0.028 seconds

Research on the Electrical Charging of a Water Droplet on the Electrode and Droplet Actuation Method using Electrical Charge (전극표면에서 액적의 충전현상과 이를 이용한 액적의 이동 방법에 관한 연구)

  • Jung, Yong-Mi;Oh, Hyung-Chang;Kang, In-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.666-669
    • /
    • 2008
  • Droplet in miniaturized microfluidic systems have received much focused attention recently. In this work, electrical charging phenomenon of a conducting water droplet on the electrode under the dc electric field is studied and using this phenomenon droplet actuation method for microreactor applications is experimentally demonstrated. To find effects of key factors, the effects of electric field, medium viscosity, and droplet size are investigated. A scaling law of charging for the conducting droplet is derived from the experimental results. Unlike the case of a perfect conductor, the estimated amount of electrical charge ($Q_{est}$) of a water droplet is proportional to the 1.59 power of the droplet radius (R) and the 1.33 power of the electric field strength (E). (For a spherical perfect conductor, Q is proportional to R2 and E.) It is thought that the differences are mainly due to incomplete charging of a water droplet resulted from the combined effect of electrochemical reaction at electrode and the relatively low conductivity of water. Using this phenomenon, we demonstrate the transport of the charged droplet and fusion of two oppositely-charged droplets. When electric field is subjected sequentially on the electrode, the charged droplet is transported on the electrode. For the visualization of fusion of charged droplets, the precipitation reaction is used. When subjected to a DC voltage, two droplets charged are moving and merging toward each other due to the Coulombic force and chemical reaction is simultaneously occurred by coalescence of droplets. It may be due to the interchange effect of charge. It is shown that the droplet can be used for microreactor where transporting, merging etc. of reagents constitute unit operation.

  • PDF

A Method of Prediction and Analysis of Electromagnetic Interference (EMI) in Wireless Power Transfer System Operating at 13.56 MHz (13.56 MHz 무선 에너지 전송 시스템의 효율적인 전자파 장해(EMI) 예측 및 분석 방법)

  • Shim, Hyun-Jin;Park, Jong-Min;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.873-882
    • /
    • 2013
  • The effective way of estimation and analysis of EMI(Electromagnetic Interference) in Wireless Power Transfer System operating at 13.56 MHz is proposed. In this paper methodology of driving magnetic field strength and electric loop current of two antennas which are in free space and on PEC plane using image theory and duality is proposed. Perfect electric conductor(PEC) is planar, infinite in extent, and perfectly conducting plane. And we will refer it as PEC plane. A equivalent circuit model is used to analyze. Using this theoretical analysis, we can derive maximum magnetic field strength of the far-field region numerically using measured data of near-field maximum magnetic field strength. The experimental results using commercial numerical simulation tool are in agreement with the theoretical results. Also, using the derivation of maximum magnetic field strength in the far-field region, we can easily estimate the maximum allowable power dissipation that meets EMI regulations.

Comparison and Examination of the Measured Data With the Data from Other Company for the Conductor and Sheath Temperatures of Live 6 kV CV Single Core Cables (활선 6 kV CV 단심 케이블의 도체 및 표면온도 측정 데이터에 관한 타사 데이터와의 비교검토)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.197-201
    • /
    • 2017
  • The demand for electric power is increasing every year in Korea. All the systems adopted at power stations in order to generate and transmit electric power should operate in perfect condition or reliability. The device for transmitting the generated high-voltage electric power is 6 kV CV single core cables. The manufacturing companies of the cables makes an official announcement that the operating lifetime of their cables is about 30years. But from the moment of operation the deterioration precesses of worsening the characteristics of cables starts. Since the reliability for the status of installed cables in deterioration has not been diagnosed, the cables can be broken at any unexpected moments. In order to prevent the abrupt cable accident by systematically monitoring the cable status, we have invented the first device in Korea. We have installed our device at Korea Western Power Co. Ltd. in order to diagnose the live cables. In this paper, we present our research results of measured temperatures of inner conductor and surface and the compared results of those data with other cable company. We also show that our results agree with those made by other company.

Light Coupling and Propagation Between a Fiber and a Dielectric Slab with a Conductor Cladding (측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파특성의 해석)

  • Kwon, Kwang-Hee;Yoon, Ki-Hong;Kim, Jeong-Hoon;Song, Jae-Won;Park, Euy-Dong;Son, Seok-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.70-79
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side polished optical fiber and an infinitely planar waveguide with a conductor cladding(PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor(PEC) on one side. The behavior of the distributed coupler is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchromization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory(CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC.

Analysis of Electromagnetic Shielding Characteristics of the Spherical Multilayered Dielectric (구형 다층 유전체의 전자파 차폐특성 해석)

  • Ryu, Hwang;Lee, Sang-Seul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.26-31
    • /
    • 1993
  • We have analyzed shielding characteristics of the spherical multilayered dielectric, with the assumption that the inner part of the model is filled with the perfect conductor whose radius is varied from 0.2.lambda. to 1.0.lambda. and the outer part of the conducting sphere is covered by a lossy multilayered dielectric. Variation of shielding effects have been examined as the function of parameter of the dielectric layer and the radius of the conducting sphere.

  • PDF

Analysis of scattering fields by conductors with arbitrary cross-section in parallel-plate waveguide (평행판 도파관내의 산란 도체에 의한 산란파 해석)

  • 정봉식;김현정;김응수;조규완
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.65-73
    • /
    • 1995
  • In this paper, new algorithm which calculates transmission coefficient of electromagnetic wave by numerical analysis of scattered field by conductors with arbitrary cross-sections in parallel-plate waveguide is proposed. Proposed algorithm assumes magnetic current distribution on the boundary of scattering conductors, and applies Image theorem to perfect conductor surfaces of parallel-plate waveguide. Integral equations for fictitious magnetic currents on conducting boundary are set up. Magnetic current distributions on conducting boundary are expanded as exponential basis function, and using Galerkin method matrix equations are set wp. To compute matrix elements this method utilizes Fourier transform which is faster than numerical integration. Finally, frequency and incidence-angle characteristic of transmission coefficient are calculated and compared with experimental results.

  • PDF

A Simulation of the Detection of Buried Facilities using FDTD (FDTD를 이용한 매설 설비의 탐지 시뮬레이션)

  • Lee, Woo-Chan;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • In Ground Penetrating Radar (GPR) for buried object detection, it is important to identify a buried target because removal of an unwanted target requires as much time and effort as does a wanted target. For a simulation of the target identification, the FDTD (Finite Difference Time Domain) and PML (Perfectly Matched Layer) techniques are widely used. Simulation results vary depending on the type of the buried object and the position of the source. As a result, this paper illustrates the range (time) profile of the five types of facilities including PEC (Perfect Electric Conductor) rectangular box and pipes, and shows the comparison of the range profile of the buried facilities.

  • PDF

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity

  • Jun, Seung Won;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.378-382
    • /
    • 2018
  • In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.

Modal Analysis of Point and Discretized Continuous Spectra for Metal-Insulator-Metal Waveguides in the Terahertz Region

  • Hur, Jun;Choo, Hosung;Park, Jong-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1644-1654
    • /
    • 2018
  • Eigenvalue distributions for a periodic metal-insulator-metal waveguide, classified into the point spectrum and the discretized continuous spectrum (DCS), are investigated as functions of frequencies, gap widths, and periods. Muller's method is suggested for solving exact eigenvalues, and we propose the scheme for finding proper initial values in the Muller's method by considering only ${\Re}e({\varepsilon}_r)$ in the dispersion equation. We then find that anti-crossing behavior, repulsive effect between the point spectrum and the DCS, becomes stronger when the real parts of the roots in the point spectrum have smaller values. Finally, we examine the transmittances of a single subwavelength slit for real metals using the mode matching technique. The transmittances in real metals similarly follow those of the perfect electric conductor (PEC) at low frequencies, while the patterns at higher frequencies begin to differ from the PEC.

Design of Transparent Electromagnetic Absorbing Structure for Stealth Aircraft Canopy (스텔스 전투기 캐노피를 위한 투명 전자파 흡수구조 설계)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • In this paper, transparent circuit analog radar absorbing structure with angular stability for stealth aircraft canopy was proposed and designed. To obtain wideband electromagnetic absorption, optical transparency and smaller thickness, we proposed the novel FSS(Frequency Selective Surface) for X-band and implemented the resistive FSS and PEC(Perfect Electric Conductor) plane using ITO(Indium Thin Oxide) coating with optical transmissivity of 90 %. Reflection loss characteristics for different incident angles of both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations are presented through simulations. We then fabricated the proposed structure to verify the simulation results. The comparisons between the simulation and measured results show good agreements. The results also show that the proposed radar absorbing structure can provide better frequency stability for different incidence angles and polarizations as well as optical transparency. We can apply this proposed structure to the canopy of stealth aircraft and other stealth applications for visible transparency.