• Title/Summary/Keyword: percolation rate

Search Result 70, Processing Time 0.034 seconds

Back-Extraction Processes of C.C.Lipase with Mediated AOT Reverse Micellar System

  • Lee, Sung-Sik;Kim, Bong-Gyu;Sung, Nak-Chang;Lee, Jong-Pal
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.873-877
    • /
    • 2004
  • The relationship between the behaviors of c.c.lipase back-extraction and their percolation phenomena by using AOT reverse micellar systems (RVMS) has been studied by the addition of a small amount of additives to organic phase such as thiols and nonionic-surfactants focusing on micelle-micelle interactions. The values of ${\beta}_t$ defined by the variation of percolation processes and back-extraction behaviors of c.c.lipase have a good linear correlation. The hydrophobicity of additive molecules suppressing the cluster formation of reverse micelles (high values of ${\beta}_t$) improved the back-extraction behavior of c.c.lipase. The back-extraction fraction and its rate of c.c.clipase are increased with decreasing of the value of hydrophilic lipophilic balance (HLB) and increasing of the hydrophobicity per additive molecules added to reverse micellar systems (RVSM) in the same additives concentration.

Evaluation of Percolated Water Quality of Paddy Fields Using Nonparametric Test (비모수검정을 이용한 논침투수 수질의 평가)

  • Oh, Seung-Young;Kim, Jin-Soo;Oh, Kwang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.99-110
    • /
    • 2005
  • Characteristics of concentrations of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) pollutant in percolated water at four paddy field sites (Soro, Odong, Munui, and Boeun) were investigated by a nonparametric test. Percolation rate measurement and percolated water sampling were taken during irrigation periods at $5{\sim}10$ day intervals. The normality of percolation rate and pollutant concentrations were examined using histogram, boxplot, and the Kolmogorov-Smirnov (K-S) test. Pollutant concentrations in percolated water showed positively skewed distribution. The median concentrations of pollutant were 1.91 mg/L for TN, 0.021 mg/L for TP, and 6.6 mg/L for COD, which were lower than its arithmetic mean concentrations by $35\%$ for TN, $36\%$ for TP, and $13\%$ for COD. The median concentrations of TN and TP differed significantly among sample sites according to the Kruskal-Wallis test. However, median concentrations were not significantly different among month except for TN and TP of Soro and COD of Odong. The percolation load of pollutants during irrigation periods in the study area were estimated at $3.12{\sim}7.75\;kg/ha$ for TN, $0.033{\sim}0.155\;kg/ha$ for TP, and 10.7 kg/ha for COD, which were much lower than respective values reported in Japan.

Classification of Hydrologic Soil Groups of Soil Originated from Limestone by Assessing the Rates of Infiltration and Percolation (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, and have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for classification of hydrologic soil group (HSG) of soils originated from limestone by measuring the infiltration rate of surface soils and percolation rate of sub soils. Soils used for the experiment were 6 soils in total : Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. Particle size distribution and organic matter content of the soils were analyzed. HSG, which was made by USDA NRCS(National Resources Conservation Service) for hydrology, of Gwarim series with O horizon of accumulated organic matter was classified as type A which show the properties of low runoff potential, rapid infiltration and percolation rate. HSG of Mosan series, which has high gravel content and very rapid permeability, was classified as type B/D because of the impermaeble base rock layer under 50cm from surface. HSG of Jangseong series with shallow soil depth was classified as type C/D owing to the impermaeble base rock layer under 50cm from surface. HSG of Maji series was type B, and HSG of Anmi series used as paddy land was type D because of slow infiltration and percolation rate caused by the disturbance of surface soil by puddling. HSG of Pyeongan series having a sudden change of layer in soil texture was type D because of the slow percolation rate caused a the layer.

Studies on the Acid Sulphate Soils - Effect of the Rice Plant Growth by Amounts of Lime Application on No-Percolation and Percolation - (산성(酸性) 유산염(硫酸鹽) 토양(土壤)에 관(關)한 연구(硏究) - 투수(透水)에 의(依)한 석회(石灰) 시용량(施用量)이 수도생육(水稻生育)에 미치는 영향(影響) -)

  • Ha, H.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 1970
  • This experiment was conducted to investigate the influence of amounts of lime dressed on the growth of rice by the treatment of percolation and nonpercolation in the acid sulphate soil. And also analysis of soil chemical components after treatment was carried out. The results obtained were summarized as follows: 1. In the initial stage of growth, number of tillers and plant length showed no distinct differences between the treatments of percolation and nonpercolation, but after August the effect of lime appeared and the percolation treatment was more effective than the nonpercolation. 2. Lime dressing affected good influence on the panicles, grain per panicles and the rate of grain formation, and the treatment of percolation showed better results than nonpercolation. 3. If the yield of rough rice in the control (nonpercolation and lime dressing) was 100, it was 194 in the treatment of nonpercolation 12me/100gr of lime dressed, 268 in the treatment of percolation-4me/100gr of lime and 315 in the 8me/100gr-percolation. 4. Lime dressing affected good influence on the control of Helminthosporium leaf spots. 5. In the case of lime dressing, amounts of available phosphate and soluble silicon dioxide were increased, but ferrous ion ($Fe^{{+}{+}}$) were decreased.

  • PDF

Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites

  • Lee, Young Sil;Yoon, Kwan Han
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.86-92
    • /
    • 2015
  • Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.

Optimum Rates of N. Absorbed Zeolite to be Applied under the Water Percolation Adjusted Sand Paddy Soil (사질답토양(砂質沓土壤)에서 투수속도조절(透水速度調節)과 질소흡착(窒素吸着) Zeolite의 시비량(施肥量)에 관(關)한 연구(硏究))

  • Ahn, Sand-Bae;Park, Jun-Kyu;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 1987
  • A pot experiment was conducted to find out the effectiveness of ammonium sulfate absorbed Zeolite on the yield of rice and the changes of some plant nutrients under the condition of two levels of water percolation. The results were as follows: 1. Unhulled rice yield was increased in the plot of the percolation of 10 mm/day than the percolation of 30 mm/day due to the increase of panicle number and ripening ratio. 2. $NH^+_4-N$, $K^+$ and $SiO_2$ concentration in soil leachates were lower in the percolation rate of 10 mm/day than in the early stage of rice growth were decreased by the application of Zeolite 1.0 T/10a. 3. Plant uptakes of K and N in the harvesting stage were more accelerated in the percolation of 10 mm/day comparing with the percolation of 30 mm/day, and the silica uptake of plant was the reverse against the case of former elements. 4. The optimum rates of Zeolite for maximum yield were about 1T/10a.

  • PDF

Infiltration and Percolation Characteristics of Water in Agricultural Land Filled with Rock-Dust (암분 매립 농경지 토양의 표면 침투 및 삼투 특성)

  • Hur, S.O.;Jeon, S.H.;Lee, Y.J.;Han, K.H.;Jo, H.R.;Kang, S.S.;Kim, M.S.;Ha, S.G.;Kim, J.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.40-44
    • /
    • 2009
  • This study was carried for the understanding of infiltration and percolation characteristics of water in agricultural land filled with rock-dust (Technosols). The experiment was performed at two sites (A, B), and soil horizons of the sites were classified with 4 layers, respectively. The soil texture of all soil horizons was analyzed with silt loam (SiL) except for the soil texture, which was loamy sand (LS), at the lowest horizon of measurement site A. The bulk densities at each horizon of two soils were mostly over $1.49g{\cdot}cm^{-3}$, which is very higher than $1.25g{\cdot}cm^{-3}$ of typical medium-textured mineral soil, except for the surface of site A measured immediately after tillage. The concentrations of $P_2O_5$ at surface of two soils s were 1962 (A), 1613 (B) $mg{\cdot}kg^{-1}$, respectively. These concentrations are 3.2~6.5 times of $300{\sim}500mg{\cdot}kg^{-1}$, which is the optimum concentration for crop growth. Infiltration rates at surface of the soils were 3.54 (A), 2.85 (B) cm $hr^{-1}$, but percolation rates at soil horizons under the surface were below 0.3 (A), below 0.003 (B) cm $hr^{-1}$. These results would be because the surface soils were managed by tillage and crop planting etc., but soils under surface were formed with structural problems occurred at the formation time of agricultural land accumulated with rock-dust or a compaction by farm machines.

Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures (경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Kim, Won-Tae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.268-273
    • /
    • 2006
  • Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.

One Dimensional Heat Flow Equation Incorporated with the Vertical Water Flow in Paddy Soils I. An Analytical Solution and It's Application to Tow Different Paddy Soils with Different Percolation Rates (답토양(沓土壤)에 있어서 물 이동(移動)이 복합(複合)된 일차원(一次元) 열이동방정식(熱移動方程式)에 관(關)하여 I. 분석해(分析解)와 투수속도(透水速度)가 다른 두 답토양(沓土壤)에 대(對)한 적용(適用))

  • Jung, Yeong-Sang;Kim, Lee-Yul;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.179-184
    • /
    • 1982
  • To describe a mathematical heat transfer model in saturated paddy soils, an analytical solution of the heat flow equation incorporated with the heat transfer by mass flow of water was obtained under the assumptions: 1) the diurnal (or annual) changes in temperature at a depth follow harmonic curves, 2) the temperature at the infinite depth be constant and 3) the temperatures of soil and water at the one depth be identical. The calculation of thermal diffusivities of the soil is possible with the known values of the physical parameters of each component in the soil matrix (heat capacity, density and porosity), percolation rate and the minimum and maximum temperatures at two different depths. The calculated thermal diffusivities using the solution were $9.5cm^2/hr$ for the loam soil with the percolation rate of 0.88cm/day and $13.9cm^2/hr$ for the sandy loam soil with the percolation rate of 2.64 cm/day.

  • PDF

유구지역에서의 누적강수량과 지하수수위강하를 이용한 지하수함양율 추정

  • 이주영;이기철;정형재;정성욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.515-518
    • /
    • 2003
  • Groundwater recharge rate can be estimated from groundwater head rebound due to rainfall. Groundwater level changes are monitored for 10 months at Yugu area. Difference between two recharge rates calculated by rainfall and by effective rainfall is 1.1%~1.6%. Since this method ignores soil water percolation during groundwater level regression, the actual recharge rate may be higher than estimated one by cumulative rainfall and groundwater level change.

  • PDF