• 제목/요약/키워드: percolation rate

검색결과 70건 처리시간 0.024초

단위논에서의 질소, 인 및 COD의 수질 특성 (Characteristics of Concentration of Nitrogen , Phosphorous and COD in a Paddy Field)

  • 이종진;김진수;오승영
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.670-675
    • /
    • 1999
  • The effect of fertilizer applicatioin on ponded and percolation water in paddies were evaluated at the field plots of the Chungbuk National University for irrigation period. The chemical fertilicers were applied to the study polts at an average application rate of 77, 110, 165kgN/ha, respectively. The concentration of T-N , T-P and COD in ponded water greatly depends on the amount and timing of fertilizer applied. Therefore, the decrease in the amount of fertilizer and proper water management may be needed to decrease in the amount of fertilizer and proper water management may be needed to reduce the runoff loading.

  • PDF

Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer

  • Vaidya, Saiprasad;Allouche, Erez N.
    • Smart Structures and Systems
    • /
    • 제7권1호
    • /
    • pp.27-40
    • /
    • 2011
  • Geopolymer concrete is finding a growing number of niche applications in the field of civil engineering due to its high compressive strength and strength gain rate, retainage of structural properties in elevated temperature environments, chemical stability in highly acidic conditions and environmental benefits. Combining the above mentioned characteristics with induced electrical conductivity, could enable geopolymer cement to serve as a smart and sustainable cementitious material suitable for health monitoring of civil structures. Carbon fibers were added to fresh geopolymer and OPC (ordinary Portland cement) mixes to enhance their electrical conductivities. AC-impedance spectroscopy analysis was performed on the specimens with fiber fraction ranging from 0.008 to 0.8 with respect to the weight of cementitious binder, to measure their electrical resistivity values and to determine the maximum beneficial fiber content required to attain electrical percolation. Experimental observations suggest that CFR-geopolymer cement exhibits superior performance to CFR-OPC in terms of conducting electrical current.

유기물의 토양 개량 효과 측정 (The Measurement of Soil Conditioning Effects of Organic Materials)

  • 주영규
    • 아시안잔디학회지
    • /
    • 제7권1호
    • /
    • pp.13-18
    • /
    • 1993
  • Much attention has been given recently to solve the environmental contamination in golf courses Changing to culture practice rather than chemical practice that depends on pesticides and fertilizers is a hot issue in golf courses or grasslands. Organic soil conditioners improve soil-plant envirormental conditions rich in physical properties. In this study, measuring systems to evaluate soil conditioning effects were set up for on-site purpose. After establishing the methodology for evaluating soil conditioner effects, 2 kinds of organic conditioners were rested for examination. The systems for the methodology included a set of simulating equipment for field capacity, an impact type soil column compactor, and an infiltration-percolation system. Test results using the systems showed bulk density and infiltration rate of mixed soil were decreased at highter rates of conditioner, but total porocities were increased. Increased porocities were most capillary pore space which has a positive effect on soil water potential. The systems and methodology in this study seem to have an efficiency to measure the effects of soil conditioner on site purpose.

  • PDF

석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법 (Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction)

  • 박호영;김영주;유근실;김춘근;김동훈
    • 대한환경공학회지
    • /
    • 제28권10호
    • /
    • pp.1065-1073
    • /
    • 2006
  • 영흥 화력발전소 1호기 보일러에서 발생된 미연분은 석탄 회의 재활용 및 보일러 효율 측면에서 문제를 일으키고 있었다. 본 연구에서는 미연분 및 사용 석탄의 특성과 현장의 연소조건 분석을 수행하고 보일러 운전조건을 변경하므로서 보일러에서 발생되는 미연분을 저감하고자 하였다. 미연분의 물리, 화학적 분석 결과 대부분 중공(中空)형태의 Cenosphere와 뭉쳐진(Agglomerated) 형태의 Soot로 이루어져 있었다. 영흥 화력발전소에서 사용중인 6개 탄종에 대하여 Tar 및 Soot의 발생 가능량을 CPD(Chemical Percolation Devolatilization) 모델을 이용하여 조사한 결과, Sanseo, Ensham, Elk Valley 탄의 경우 그 발생 가능량이 비교적 적었으며 Peabody, Arthur, Shenhua 탄은 높았다. 영흥 화력발전소 1호기 보일러의 각 미분탄 공급관에서의 미분탄 공급량을 측정하였는데 코너 별로 공급되는 몇몇 버너에서 미분탄이 편중되어 공급되고 있음을 알 수 있었다. 이에 따라 soot가 주성분인 미연분의 산화율을 증가시키기 위하여 과잉공기량을 증가시키고 산화제와의 혼합정도를 높이기 위하여 SOFA(Separated Over Fire Air)의 yaw 각도를 적절히 조절함으로서 미연분의 발생량을 현저히 감소시킬 수 있었다.

Time Domain Reflectometry를 이용한 논토양 단면의 수분함량 및 전기전도도 모니터링 (Monitoring of Water Content and Electrical Conductivity in Paddy Soil Profile by Time Domain Reflectometry)

  • 류순호;한광현;배병술;박무언
    • 한국토양비료학회지
    • /
    • 제32권4호
    • /
    • pp.365-374
    • /
    • 1999
  • 논토양 중 물질의 수직이동에 관한 정보를 얻고자 벼재배포장에서 TDR probe를 10cm간격으로 130cm까지 설치하고 1998년 5월 20일 부터 11월 3일까지 깊이별 용적수분함량 및 전체전기전도도 ${\sigma}_a$ 변화를 모니터링하였다. 1. 토양의 용적수분함량은 불포화지역(20-100cm)을 포함하는 ${\varepsilon}$형태의 profile을 보였고, C1층(60-90cm)은 수분함량 변화가 가장 큰 것으로 관측되었다. 2. 지하수위 변화에 대한 van Genuchten 수분보유특성 함수로 fitting한 결과 깊이 60cm 지점은 표면담수와 지하수에 의해 영향을 받지만, 깊이 80cm에서는 주로 지하수에 의해서만 영향을 받는 것으로 판단되었다. 3. 토양 층위별 용탈수량에서 깊이 130cm이하로 이동되는 수분은 약 2cm $day^{-1}$로 거의 일정했지만 지하수위가 높은 시기에 C1층은 매우 높은 수리전도도(최고 38cm $day^{-1}$)를 나타내었다. 4. C1층으로 유입되는 용질은 매우 빠른 속도로 C2층으로 이동하고 C2층에서 지체된 후 비교적 일정한 속도로 하부로 이동하는 것으로 판단되었고, 시험기간 중 수분함량 변화가 거의 없었던 50, 110cm 지점의 ${\sigma}_a$ 변화를 통해 이를 확인할 수 있었다. 벼를 재배하는 동안 장기간 표면이 담수상태로 유지된다하더라도 실제로 포화되는 지역은 표면으로부터 20cm 이내이며, 수분 및 용질의 이동은 그 이하의 불포화지역에서 지하수위의 상승과 하강, 그리고 빠른 투수속도를 가지는 토양층위의 존재 여부에 따라 크게 달라지는 것으로 판단된다.

  • PDF

논벼의 최대용수시기와 순단위용수량의 결정에 대하여 (On the determination of the maximum water requirement Stage and the net unit duty of water in the rice fields)

  • 김철기;김재휘
    • 한국농공학회지
    • /
    • 제26권4호
    • /
    • pp.37-51
    • /
    • 1984
  • The purpose of this study is to find out the determination method of designed duty of water in the rice fields through the comparison of the net unit duty of water at the late reduction division to heading stage with that at the planting stage. The data used for analysing this problem are the data of precipitation and gauge evaporation observed by Cheong-ju Meterological Center, the coefficient of evapotranspiration by College of Agriculture, Chung Buk University and the data of transplanting progressing in Boun area. The results obtained from this analysis are summarized as follows. 1.The occurring year of 1/10 probability value for available precipitation, gauge evaporation and mean maximum daily evapotranspiration during growing season is the year of 1977. 2.The 1/10 probability values of mean maximum evapotranspiration per day under the production rate of 1, 400kg/l0a and 1, 500kg/10a based on the weight of dry matters are 9. 2mm/day and 9. 6mm/day, respectively. 3.The net unit duty of water required in the fields that the maximum planting rate exists is more than the one in the fields that the planting rate is uniform in the planting stage. 4.The determination of net unit duty of water in the late reduction division to heading stage or the planting stage depends upon the daily evapotranspiration and percolation rate in the late reduction division to heading stage or the water depth required for planting and daily consumptive use of water after planting at the planting stage. Therefore the use of figure 5-(1) to figure 5-(6) can easily make the determination of the designed net unit duty of water out of above two kinds of net unit duty of water.

  • PDF

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

PEMFC 바이폴라 플레이트 제조용 EPOXY/GRAPHITE/EXPANDED GRAPHITE 복합재료의 열경화 및 전기적 성질 (Thermal Curing and Electrical Properties of Epoxy/Graphite/Expanded Graphite Composite for Bipolar Plate of Pemfc)

  • 이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.827-834
    • /
    • 2011
  • Epoxy/graphite/expanded graphite composites have been prepared in various weight ratios and thermal degradation and electrical properties were estimated in order to use for the bipolar plate materials in PEMFC. Thermogravimetric analysis (TGA) showed that the epoxy/graphite system cured by a curing agent GX-533 was most proper because its weight loss until $80^{\circ}C$ at which PEMFC would be operated was 0.3 wt%, and differential scanning calorimetry (DSC) analysis showed its cure temperature would be sufficient at $80^{\circ}C$. The activation energy for the cure reaction was 132.0 kJ/mol and the pre-exponential factor was $1.76{\times}10^{17}min^{-1}$. Electrical conductivity on the surface of the bipolar plate prepared under a pressure of 200 $kgf/cm^2$ was increased from 4 to 25 $S/cm^2$ by increasing expanded graphite (EG) content from 50 phr to 90 phr. The percolation threshold was initiated around 75 phr and the corrosion rate at 80 phr was 1.903 $uA/cm^2$.

DETAILED EXAMINATION OF INVERSE-ANALYSIS PARAMETERS FOR PARTICLE TRAPPING IN SINGLE CHANNEL DIESEL PARTICULATE FILTER

  • Jung, S.C.;Park, J.S.;Yoon, W.S.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.165-177
    • /
    • 2007
  • Predictions of diesel particulate filtration are typically made by modeling of a particle collection, and providing particle trapping levels in terms of a pressure drop. In the present study, a series of single channel diesel particulate filter (DPF) experiments are conducted, the pressure traces are inversely analyzed and essential filtration parameters are deducted for model closure. A DPF filtration model is formulated with a non-linear description of soot cake regression. Dependence of soot cake porosity, packing density, permeability, and soot density in filter walls on convective-diffusive particle transportation is examined. Sensitivity analysis was conducted on model parameters, relevant to the mode of transition. Soot cake porosity and soot packing density show low degrees of dispersion with respect to the Peclet number and have asymptotes at 0.97 and $70\;kg/m^3$, respectively, at high Peclet number. Soot density in the filter wall, which is inversely proportional to filter wall Peclet number, controls the filtration mode transition but exerts no influence on termination pressure drop. The percolation constant greatly alters the extent of pressure drop, but is insensitive to volumetric flow rate or temperature of exhaust gas at fixed operation mode.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.