• Title/Summary/Keyword: percentage average error

Search Result 92, Processing Time 0.027 seconds

Continuous and Accurate PCRAM Current-voltage Model

  • Jung, Chul-Moon;Lee, Eun-Sub;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.162-168
    • /
    • 2011
  • In this paper, we propose a new Verilog-A current-voltage model for multi-level-cell PCRAMs. This model can describe the PCRAM operation not only in full SET and RESET states but also in the partial resistance states. And, 3 PCRAM operating regions of SET-RESET, Negative Differential Resistance, and strong-ON are unified into one equation in this model thereby any discontinuity that may introduce a convergence problem cannot be found in the new PCRAM model. The percentage error between the measured data and this model is as small as 7.4% on average compared to 60.1% of the previous piecewise model. The parameter extraction which is embedded in the Verilog-A code can be done automatically.

Automatic design of fuzzy controller using genetic algorithms (유전 알고리즘을 이용한 퍼지 제어기의 자동설계)

  • 김대진;홍정철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.138-151
    • /
    • 1996
  • This paper proposes a genetic fuzzy controller ensemble (FCE) for improving the control performance of of fuzzy controller in the non-linear and complex problems. The design procedure of each fuzzy controller in the FCF consists of the following two stages, each of which is performed by different genetic algorithms. The first stage generates a fuzzy rule base that covers the training examples as many as possible. The second stage builds fine-tuned membership funcitons that make the control error as small as possible. These two stages are repeated independently upon the different partition patterns of input-output variables. The control performance of the proposed method is compared with that of wang and mendel's approach[1] in terms of either the percentage of successful controls reaching to the goal or the average traveling distance.

  • PDF

Performance Analysis of an Anisotropic Magnetoresistive Sensor-Based Vehicle Detector (Anisotropic Magnetoresistive 센서를 이용한 차량 검지기의 성능분석)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.598-604
    • /
    • 2009
  • This paper proposes a vehicle detector with an anisotropic magnetoresistive (AMR) sensor and addresses experimental results to show the detector's performance. The detector consists of an AMR sensor and mechanical and electronic apparatuses. The AMR sensor, composed of four magnetoresistors, senses disturbance of the earth's magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. This paper verifies performance of the detector on the basis of experimental results obtained from the field tests carried under the two traffic conditions on local highways in Korea. First, I show the vehicle counting performance on a low speed congested highway by comparing the vehicle counts measured by the detector with the exact counts. Second, both vehicle counts and average speeds calculated from the measured point-occupancy on another continuously free running highway are compared with the reference values obtained from a loop detector which has two independent loop coils, where I have used several performance indices including mean absolute percentage error (MAPE) to show the performance consistency between the two types of detectors.

패턴분류와 임베딩 차원을 이용한 단기부하예측

  • Choe, Jae-Gyun;Jo, In-Ho;Park, Jong-Geun;Kim, Gwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1144-1148
    • /
    • 1997
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

A Daily Maximum Load Forecasting System Using Chaotic Time Series (Chaos를 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.578-580
    • /
    • 1995
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time, For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor font mentioned above. The one day ahead forecast errors are about 1.4% of absolute percentage average error.

  • PDF

A Neural Network Model for Building Construction Projects Cost Estimating

  • El-Sawalhi, Nabil Ibrahim;Shehatto, Omar
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • The purpose of this paper is to develop a model for forecasting early design construction cost of building projects using Artificial Neural Network (ANN). Eighty questionnaires distributed among construction organizations were utilized to identify significant parameters for the building project costs. 169 case studies of building projects were collected from the construction industry in Gaza Strip. The case studies were used to develop ANN model. Eleven significant parameters were considered as independent input variables affected on "project cost". The neural network model reasonably succeeded in estimating building projects cost without the need for more detailed drawings. The average percentage error of tested dataset for the adapted model was largely acceptable (less than 6%). Sensitivity analysis showed that the area of typical floor and number of floors are the most influential parameters in building cost.

Short-Term Load Forecasting Exponential Smoothoing in Consideration of T (온도를 고려한 지수평활에 의한 단기부하 예측)

  • 고희석;이태기;김현덕;이충식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.730-738
    • /
    • 1994
  • The major advantage of the short-term load forecasting technique using general exponential smoothing is high accuracy and operational simplicity, but it makes large forecasting error when the load changes repidly. The paper has presented new technique to improve those shortcomings, and according to forecasted the technique proved to be valid for two years. The structure of load model is time function which consists of daily-and temperature-deviation component. The average of standard percentage erro in daily forecasting for two years was 2.02%, and this forecasting technique has improved standard erro by 0.46%. As relative coefficient for daily and seasonal forecasting is 0.95 or more, this technique proved to be valid.

  • PDF

A short-term Load Forecasting Using Chaotic Time Series (Chaos특성을 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.835-837
    • /
    • 1996
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network(Back-propagation) is proposed. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

Developing a Mathematical Model For Wheat Yield Prediction Using Landsat ETM+ Data

  • Ghar, M. Aboel;Shalaby, A.;Tateishi, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.207-209
    • /
    • 2003
  • Quantifying crop production is one of the most important applications of remote sensing in which the temporal and up-to-date data can play very important role in avoiding any immediate insufficiency in agricultural production. A combination of climatic data and biophysical parameters derived from Landsat7 ETM+ was used to develop a mathematical model for wheat yield forecast in different geographically wide Wheat growing districts in Egypt. Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) with temperature were used in the modeling. The model includes three sub-models representing the correlation between the reported yield and each individual variable. Simulation results using district statistics showed high accuracy of the derived correlations to estimate wheat production with a percentage standard error (%S.E.) of 1.5% in El- Qualyobia district and average (%S.E.) of 7% for the whole wheat areas.

  • PDF

Calibration of Timetable Parameters for Rail-Guided Systems

  • Zhao, Weiting;Martin, Ullrich;Cui, Yong;Kosters, Maureen
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In order to achieve a comprehensive utilization of railway networks, it is necessary to accurately assess the timetable indicators that effect the train operation. This paper describes the parameter calibration for two timetable indicators: scheduled running time and scheduled dwell time. For the scheduled running time, an existing model is employed and the single timetable parameter (percentage of minimum running time) in that model is optimized. For the scheduled dwell time, two intrinsic characteristics: the significance of stations and the average headway at each station are proposed firstly to form a new model, and the corresponding timetable parameters (the weight of the significance and the weight of the average headway) are calibrated subsequently. The Floyd Algorithm is used to obtain the connectivity among stations, which represents the significance of the stations. A case study is conducted in a light rail transportation system with 17 underground stations. The results of this research show that the optimal value of the scheduled running time parameter can be automatically determined, and the proposed model for the scheduled dwell time works well with a high coefficient of determination and low relative root mean square error through the leave-one-out validation.