• Title/Summary/Keyword: peptide-MHC complex

Search Result 15, Processing Time 0.022 seconds

The Interaction between HCV-Infected huh7.5 Cells and HCV-Specific T Cells (C형 간염 바이러스 감염 간암 세포주와 T 림프구의 상호작용에 대한 연구)

  • Kang, Hyojeung;Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.169-172
    • /
    • 2014
  • Recently, Hepatitis C virus (HCV) replication system has been established using human hepatoma cells (huh cell) and a variety of HCV clones. In this study, we established an infectious HCV replication system using huh7.5 cells and J6/JFH1 clone (genotype 2a). In addition, we investigated the antigen presentation capability of HCV-infected huh7.5 cells to HCV-specific T cells. Interestingly, HCV-infected huh7.5 cells were not capable of activating HCV-specific T cells. However, huh7.5 cells stimulated by exogenous HCV peptide were able to activate HCV-specific T cells, which was shown to produce TNF-${\alpha}$ and IFN-${\gamma}$. We further examined if HCV infection has an inhibitory effect on the expression of MHC class I molecule of huh7.5 cells. We found that HCV infection did not change the expression level of MHC class I molecule on huh7.5 cells.

Relationship between Condition Index Values and Expression Levels of Gene and Protein in the Adductor Muscle of Diploid and Triploid Oysters Crassostrea gigas

  • Su-Jin Park;Youn Hee Choi
    • Development and Reproduction
    • /
    • v.26 no.4
    • /
    • pp.165-174
    • /
    • 2022
  • Three proteins [myosin heavy chain (MHC), filamin-C fragment (FIL-C), and actin 2 (ACT2)] were identified in adductor muscle from diploid and triploid Pacific oysters (Crassostrea gigas) and the relationship between the condition index (CI) and mRNA expression of these genes was investigated, together with the mRNA expression of molluscan insulin-related peptide (MIP), C. gigas insulin receptor-related receptor (CIR), and insulin-like growth factor binding protein complex acid labile subunit (IGFBP-ALS). Monthly changes in the CI were similar to the changes in the tissue weight rate in both groups. ACT2 and MHC mRNA expression was statistically higher in the triploid than the diploid, while FIL-C mRNA expression was significantly higher in the diploid (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression of the diploid oysters were all significantly higher in July than in other months (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression in the triploid oysters was high in July, but there were no significant differences (p>0.05). Changes in the expression levels of the genes investigated in this study could be used as intrinsic indicators of the annual growth, maturity, and spawning period of cultured diploid and triploid C. gigas in Tongyeong, Korea.

Effects of Mizoribine on MHC-Restricted Exogenous Antigen Presentation in Dendritic Cells

  • Song, Young-Cheon;Han, Shin-Ha;Kim, Hyun-Yul;Kim, Kwang-Hee;Kwon, Jeung-Hak;Lee, Sang-Jin;Ha, Nam-Joo;Lee, Young-Hee;Lee, Chong-Kil;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1147-1153
    • /
    • 2006
  • Mizoribine (MZR) has been shown to possess immunosuppressive activity that selectively inhibits the proliferation of lymphocytes by interfering with inosine monophosphate dehydrogenase. The efficacy of MZR is not only in patients who have had renal transplantation, but also in patients with rheumatoid arthritis (RA), lupus nephritis, and primary nephritic syndrome. Because the exact mechanism of its immunosuppressive action is not clear, the object of this study was to examine the ability of MZR to regulate the antigen presenting cells (APCs), dendritic cells (DCs). In this work, we tested whether MZR ($1{\sim}10\;{\mu}g/mL$) could inhibit the cross-presentation of DCs. DC2.4 cells ($H-2K^{b}$) or bone marrow-derived DCs (BM-DCs) generated from BM cells of C57BL/6 mouse ($H-2K^{b}$) were cultured in the presence of MZR with OVA-microspheres, and the amount of OVA peptide-class I MHC complexes was measured by a T cell hybridoma, B3Z, that recognizes OVA (257-264 : SIINFEKL)-$H-2K^{b}$ complex and expresses-galactosidase. MZR profoundly inhibited the expression of SIINFEKL-$H-2K^{b}$ complexes. This inhibitory activity of MZR appeared to affect the phagocytic activity of DCs. MZR also decreased IL-2 production when we examined the effects of MZR on $CD4^{+}$ T cells. These results provide an understanding of the mechanism of immunosuppressive activity of MZR on the inhibition of MHC-restricted antigen presentation and phagocytic activity in relation to their actions on APCs.

Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications

  • Seungbo Yoo;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that bridge innate and adaptive immune responses, thereby leading to immune activation. DCs have been known to recognize pathogen-associated molecular patterns such as lipopolysaccharides (LPS) and nucleic acids via their pattern recognition receptors, which trigger signaling of their maturation and effector functions. Furthermore, DCs take up and process antigens as a form of peptide loaded on the major histocompatibility complex (MHC) and present them to T cells, which are responsible for the adaptive immune response. Conversely, DCs can also play a role in inducing immune suppression under specific circumstances. From this perspective, the role of DCs is related to tolerance rather than immunity. Immunologists refer to these special DCs as tolerogenic DCs (tolDCs). However, the definition of tolDCs is controversial, and there is limited information on their development and characteristics. In this review, we discuss the current concept of tolDCs, cutting-edge methods for generating tolDCs in vitro, and future applications of tolDCs, including clinical use.

Analysis of the Stability of HLA-A2 Molecules Expressed on the Cell Surface

  • Lim, Jong-Seok;Lee, Ki-Young;Lee, Hee-Gu;Kim, Ik-Hwan;Lee, Chong-Kil;Han, Seong-Sun;Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.286-293
    • /
    • 1996
  • Association of antigenic peptide with class I MHC is believed to be crucial for maintaining stable conformation of class I molecules. T2 cells that are defective in TAP gene function mainly express class I molecules with an unstable conformation due to little or no association with antigenic peptides, whereas T1 cells that are normal in TAP gene function mainly express the stable form of class I molecules. In this work, attempts were made to determine the molecular stability of stable and unstable class I molecules. Dissociation of HLA-A2 molecules on T1 and T2 cells was monitored by flow cytometry using anti-HLA-A2 antibody after the cells were treated with brefeldin A to shut down the transport of newly-assembled HLA-A2. Estimated dissociation rate constants for the stable and unstable forms of HLA-A2 were 0.076 $h^{-1}$ and 0.66 $h^{-1}$, respectively. It appeared that both T1 and T2 cells express stable and unstable class I complex, but with different ratios of the two forms. Furthermore, $interferon-{\gamma}$ treatment of T1 cells appeared to induce the expression of both the stable and unstable class I molecules. These results demonstrate that class I MHC molecules can be divided into two groups in terms of structural stability and that they exist on the cell surface in both forms in a certain ratio.

  • PDF