• Title/Summary/Keyword: peptidase

Search Result 140, Processing Time 0.024 seconds

Comparison of the Sensitivity of Type I Signal Peptidase Assays

  • Sung, Meesook
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.94-98
    • /
    • 2001
  • Type I signal peptidase cleaves the signal sequence from the amino terminus of membrane and secreted proteins afters these protein insert across the membrane. This enzyme serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. Despite considerable research, the signal peptidase assay still remains improvement to provide further understanding of the mechanism and high-throughput inhibitor screening of this enzyme. In this paper, three known signal peptidase assays are tested with an E. coli D276A mutant signal peptidase to distinguish the sensitivity of each assays. In vitro assay using the procoat synthesized by in vitro transcription translation shows that the D276A signal peptidase I was inactive while in vivo processing of pro-OmpA expressed in the temperature-sensitive E. coli strain IT41 as well as in vitro assay using pro-OmpA nuclease A substrate show that D276A signal peptidase I has activity like wild-type signal peptidase. These results suggest that in vitro assay using the pro-OmpA nuclease A and in vivo pro-OmpA processing assay are more sensitive monitors than in vitro assay using the pro-coat. In conculsion, caution should be used when interpreting the in vitro results using the procoat.

  • PDF

Beta-amyloid peptide degradation by aminopeptidase and its functional role in Alzheimer's disease pathogenesis

  • AhnJo, Sang-Mee
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.75-90
    • /
    • 2006
  • Both synthetic and endogenous $A{\beta}$ are degraded by peptidase G. Both $A{\beta}40$ and 42 are cleaved by peptidase G. Peptidase G cleaves $A{\beta}40$ into small fragments ($A{\beta}18$) which lacks aggregation property and are not toxic to neuron. Peptidase G seems to degrade multimeric $A{\beta}$ more efficiently than monomeric $A{\beta}$. Peptidase G protects neurons from toxicity induced by $A{\beta}$ by cleaving it into smaller fragments. Thus, dis-regulation of peptidase G could contribute amyloid deposit found in AD brain.

  • PDF

PZ-peptidase activities in Streptococcus sanguis and other oral bacteria (Streptococcus sanguis와 여타 구강세균이 생산하는 PZ-peptidase 활성)

  • 최선진
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.143-148
    • /
    • 1983
  • The occurrence of PZ-peptidase in Streptococcus sanguis and other oral bacteria was investigated utilizing washed whole cells as the enzyme source and PZ-pentapeptide as its substrate. Under the culture conditions employed in the present study. Streptococcus sanguis strains, fresh isolates as well as laboratory strains, produced a broad range of the enzyme activity (0.5-7.9 unit/mg protein). The strains of both Streptococcus mutans and Lactobacilli showed low levels of activity (0-0.5 unit/mg protein for S. mutans). As compared with the enzyme activities of other bacteria, a moderate range of activity was produced by the strains of Strptococcus mitis nad Strptoccus salivarius. Actinomyces strains, like those of S. sanguis, produced a varying amount of activity (0-9.8 unit/ mg protein). A possible involvement of the oral bacterial PZ-peptidase in the metabolism of human saliva proteins is discussed.

  • PDF

D99 Type I Signal Peptidase Implicated Stabilizing the Protein Structure (Type I 신호펩디드 가수분해효소에 존재하는 D99 아미노산 잔기의 구조적 역할 가능성)

  • Sung, Meesook;Eunyoung Han;Lee, Hoyoung
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.140-144
    • /
    • 2003
  • Type Ⅰ signal peptidase is an integral membrane protein that functions to cleave signal peptides from secreted and membrane proteins. The enzyme serves as a potential target for the development of novel antibacterial agents due to its unique physiological properties. Despite being one of the best characterized enzymes, the catalysis of Type Ⅰ signal peptidase still remains controversy over the catalytic serine/lysine dyad mechanism. It appears that the dyad proteases are generally less efficient than the prototypical serine/histidine/aspartic acid triad found in most enzymes, although Type Ⅰ signal peptidase is an exception to this rule. In this paper, we have proposed that Type Ⅰ signal peptidase may act as the serine/lysine/aspartic acid triad cataltytic mechanism. Therefore, the aspartic acid 99 residue in the E. coli signal peptidase was chosen and mutated to an alanine to see if there is any possible role of the aspartic acid in the catalytic function. Type Ⅰ signal peptidase D99A protein was inactive in vitro assay using the procoat synthesized by in vitro transcription translation. However, the mutant was active using a highly sensitive in vivo assay. Pulse-chase experiments show that the replacement of aspartic acid 99 with alanine results in a very unstable signal peptidase molecule. Therefore, we conclude that it is unlikely that the residue is directly involved in catalysis, but rather plays an important role in stabilizing the protein structure.

Characteristics of Peptide Assimilation by Helicobacter pylori: Evidence for Involvement of Cell Surface Peptidase

  • YUN SOON-KYU;CHOI KYUNG-MIN;UHM CHANG-SUB;PARK JEONG-KYU;HWANG SE-YOUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.899-902
    • /
    • 2005
  • Peptide assimilation by Helicobacter pylori was investigated using L-phenylalanyl-3-thia-phenylalanine (PSP) as a detector peptide; the release of thiophenol upon enzymatic hydrolysis of PSP was spectrophotometrically detected with the aid of 5,5'-dithiobis[2-nitrobenzoic acid] (DTNB). By adding PSP to whole-cell suspension, thiophenol was produced progressively, resembling that found in Esherichia coli or Staphylococcus aureus. Interestingly, the rate of thiophenol production by H pylori in particular was markedly reduced when cells were pretreated with trypsin, indicating surface exhibition of peptidase. According to the competitive spectrophotometry using alanyl-peptides, H pylori did not appear to assimilate PSP through the peptide transport system. No discernible PSP assimilation could be ascertained in H pylori cells, unless provided with some additives necessary for peptidase activity, such as $Ni^{2+}\;or\;Mg^{2+}$ and an appropriate concentration of potassium or ammonium salts. These observations strongly suggest that, regardless of a presumptive peptide transport system, peptide assimilation of H. plori appears to be highly dependent upon milieu conditions, due to unique peptidase exhibition on the cell surface.

The Molecular Mechanical Model of DD-Peptidase

  • Lim, Eongjin;Won, Youngdo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.22-22
    • /
    • 1996
  • In order to establish the structural requirements for designing new ${\beta}$-lactam antibiotics it is necessary to build the molecular model of a penicillin binding protein. D-alanyl-D-alanine carboxypeptidase/transpeptidase (DD-peptidase) is a good model for PBPs. The X -ray crystallographic structure of DD-peptidase has been reported at the 1.6${\AA}$ resolution. (omitted)

  • PDF

Relation of $\Ca^{2+}$-ATPase and trigger peptidase(TPase) that are Membrane Proteins in a Differentiation Process on Heterobasidiomycerous Yeast (이담자 효모균의 성분화과정에서 막단백질 중 $\Ca^{2+}$-ATPase와 trigger peptidase(TPase)의 상호관계)

  • 정영기;이태호;정경태
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • We have studied the relation between Ca$^{2+}$-ATPase and trigger peptidase(TPase) which are membeane protein well known as their significant role for signal transduction of mating pheromone in heterobasidiomycetous yeast. Rhodosporidium toruloides. We found out that there were Ca $^{2+}$-ATPase and TPase together in isolated calmodulim binding protein(CBP), usion calmodulin affinity column chromatography after solubilization of mation type a cell membrane protein, and that the dependence of enzyme activity of both the enzymes on Ca$^{2+}$, phospholipid and nonionic detergent are similar. However, Ca$^{2+}$-ATPase hed quite absolute dependence on calmodulin and, on the other hand, TPase didn't have any dependence. Judging from the fact that there are both enzymes in CBP which the dependence of calmodulin are quite different, we found out that both enzymes were made to their compound and existed in mating type a cell membrane.

  • PDF

Experimental Study on the Pathogenesis of Otitis Media - Histopathological and Biochemical Characteristics of Middle Ear Mucosa Infected with Pseudomonas aeruginosa in Rats - (중이염의 병인에 관한 실험적 연구)

  • 김종선;조태권;강일태;노관택;최선진
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1982.05a
    • /
    • pp.19-19
    • /
    • 1982
  • Pathogenesis of otitis media was studied in an animal model of rats from a histopathological and biochemical point of view. Basic anatomical outline, and distribution and type of normal epithelial cells of the rat bulla were described as a background study. Pseudomonas otitis media was developed in rats by inoculating $10^{9}$ bacteria into the tympanic bulla. Histopathologic change of the mucoperiosteal layer showed acute stage of infection from 3 days to 3 weeks, and it became chronic after 4 weeks animals through 12 weeks. Enzyme profile in the extracts of the inflammatory middle ear tissue was studied. The levels of three enzymes, PZ-peptidase, LDH, and lysozyme were much higher in the middle ear tissue than in the corresponding sera as might be expected. Tissue/serum ratios of the enzyme activities were 13-38 for PZ-peptidase, 63-177 for LDH, and 18-94 for lysozyme. Possible role of the PZ-peptidase and possible origins of the three enzymes detected in the tissue were discussed.

  • PDF

A Potent Tissue Destructive Activity of Secreted Proteins of Aeromonas hydrophila (조직 괴사 활성을 지닌 Aeromonas hydrophila 의 분비 단백질에 관한 연구)

  • Kim, Kyu Lee;Choe, Yunjeong;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.214-222
    • /
    • 2015
  • Aeromonas hydrophila is the most common water fish pathogen and cause diseases such as hemorrhagic septicemia, dropsy, ulceration and asymptomatic septicemia. A. hydrophila secretes many extracellular products (ECPs) which contribute to effective infection, wide distribution and great adaptability to environmental changes. Crude ECPs of A. hydrophila CK257, a strain used in this study, exhibits a toxic activity to the animals including mouse, rabbit and fish. Toxic symptoms were indicated by tissue damage and skin injuries in animal. When ECPs were subcutaneously injected to animals, skin damages were observed, appearing like necrosis. Preliminary research demonstrated that the active factors are protein component. The crude ECPs were collected after ammonium sulfate precipitation of cell-free culture supernatant. ECPs were fractionated with the use gel filtration chromatography. Five ECP fractions were obtained, of which one fraction was found to be toxic to goldfish. MALDI-TOF analyses provided two interesting proteases called M35 and M28. Both M35 and M28 are known as metalloprotease. Accordingly, proteins in an active fraction exhibited caseinolytic activity. These proteins were difference of caseinolytic activity under different metallic ions. Also active fraction has elastolytic activity. These results suggested that peptidase M28 and M35 may be a candidate factor for tissue necrosis activity about infection with A. hydrophila.