• Title/Summary/Keyword: pentose

Search Result 90, Processing Time 0.022 seconds

Isolation and Characterization of Bioactive Compounds from Root of Rubus coreanus Miquel and their Antimicrobial Activity

  • Jang, Ha Na;Ha, Ji Hoon;Lee, Yoon Ju;Fu, Min Min;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.54-63
    • /
    • 2019
  • Rubus coreanus Miquel (RCM), also known as Korean blackberry or bokbunja, is used as a South Korean traditional medicine to treat acne and inflammatory skin conditions. The antimicrobial activity of RCM root and its active compounds remain unclear. In this study, we prepared a 50% ethanol fraction, ethyl acetate fraction, and acid-treated ethyl acetate fraction (aglycone fraction) of RCM root, and evaluated antibacterial activities against the skin pathogens Staphylococcus aureus, Pseudomonas acnes, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. In a paper disc assay, all fractions of RCM root showed antimicrobial activities against the five skin pathogens. The ethyl acetate fraction displayed 6-, 12-, and 2-fold higher minimal inhibitory concentration (MIC) than the 50% ethanol fraction against S. aureus, E. coli, and P. acnes, respectively. The aglycone fraction displayed 2-fold higher MIC than methyl paraben against P. acnes, S. aureus, E. coli, and P. aeruginosa. The ethyl acetate fraction displayed a minimal bactericidal concentration (MBC) similar to that of methyl paraben, and the aglycone fraction showed 2- to 4-fold higher MBCs than those of methyl paraben. In particular, the ethyl acetate fraction was not cytotoxic and showed thermal stability after incubation at high temperatures ($60-121^{\circ}C$). Finally, the ethyl acetate fraction was separated and four components were identified: procyanidin C, propelagonidin dimer, ellagic acid, and methyl ellagic acid acetyl pentose. The compounds showed high antibacterial activities. These results suggest that RCM root is potentially applicable as a natural preservative in cosmetics.

Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle

  • Muroya, Susumu;Oe, Mika;Ojima, Koichi;Watanabe, Akira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1172-1185
    • /
    • 2019
  • Objective: Meat quality attributes in postmortem muscle tissues depend on skeletal muscle metabolites. The objective of this study was to determine the key metabolic compounds and pathways that are associated with postmortem aging and beef quality in Japanese Black cattle (JB; a Japanese Wagyu breed with highly marbled beef). Methods: Lean portions of Longissimus thoracis (LT: loin) muscle in 3 JB steers were collected at 0, 1, and 14 days after slaughter. The metabolomic profiles of the samples were analyzed by capillary electrophoresis time-of-flight mass spectrometry, followed by statistical and multivariate analyses with bioinformatics resources. Results: Among the total 171 annotated compounds, the contents of gluconic acid, gluconolactone, spermidine, and the nutritionally vital substances (choline, thiamine, and nicotinamide) were elevated through the course of postmortem aging. The contents of glycolytic compounds increased along with the generation of lactic acid as the beef aging progressed. Moreover, the contents of several dipeptides and 16 amino acids, including glutamate and aromatic and branched-chain amino acids, were elevated over time, suggesting postmortem protein degradation in the muscle. Adenosine triphosphate degradation also progressed, resulting in the generation of inosine, xanthine, and hypoxanthine via the temporal increase in inosine 5'-monophosphate. Cysteine-glutathione disulfide, thiamine, and choline increased over time during the postmortem muscle aging. In the Kyoto encyclopedia of genes and genomes database, a bioinformatics resource, the postmortem metabolomic changes in LT muscle were characterized as pathways mainly related to protein digestion, glycolysis, citric acid cycle, pyruvate metabolism, pentose phosphate metabolism, nicotinamide metabolism, glycerophospholipid metabolism, purine metabolism, and glutathione metabolism. Conclusion: The compounds accumulating in aged beef were shown to be nutritionally vital substances and flavor components, as well as potential useful biomarkers of aging. The present metabolomic data during postmortem aging contribute to further understanding of the beef quality of JB and other breeds.

Microbiota of Breast Tissue and Its Potential Association with Regional Recurrence of Breast Cancer in Korean Women

  • Kim, Hyo-Eun;Kim, Jongjin;Maeng, Sejung;Oh, Bumjo;Hwang, Ki-Tae;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1643-1655
    • /
    • 2021
  • Recent studies have reported dysbiosis of the microbiome in breast tissue collected from patients with breast cancer and the association between the microbiota and disease progression. However, the role of the microbiota in breast tissue remains unclear, possibly due to the complexity of breast cancer and various factors, including racial and geographical differences, influencing microbiota in breast tissue. Here, to determine the potential role of microbiota in breast tumor tissue, we analyzed 141 tissue samples based on three different tissue types (tumor, adjacent normal, and lymph node tissues) from the same patients with breast cancer in Korea. The microbiota was not simply distinguishable based on tissue types. However, the microbiota could be divided into two cluster types, even within the same tissue type, and the clinicopathologic factors were differently correlated in the two cluster types. Risk of regional recurrence was also significantly different between the microbiota cluster types (p = 0.014). In predicted function analysis, the pentose and glucuronate interconversions were significantly different between the cluster types (q < 0.001), and Enterococcus was the main genus contributing to these differences (q < 0.01). Results showed that the microbiota of breast tissue could interact with the host and influence the risk of regional recurrence. Although further studies would be recommended to validate our results, this study could expand our understanding on the breast tissue microbiota, and the results might be applied to develop novel prediction methods and treatments for patients with breast cancer.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Microbiota, co-metabolites, and network pharmacology reveal the alteration of the ginsenoside fraction on inflammatory bowel disease

  • Dandan Wang;Mingkun Guo;Xiangyan Li;Daqing Zhao;Mingxing Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.54-64
    • /
    • 2023
  • Background: Panax ginseng Meyer (P. ginseng) is a traditional natural/herbal medicine. The amelioration on inflammatory bowel disease (IBD) activity rely mainly on its main active ingredients that are referred to as ginsenosides. However, the current literature on gut microbiota, gut microbiota-host co-metabolites, and systems pharmacology has no studies investigating the effects of ginsenoside on IBD. Methods: The present study was aimed to investigate the role of ginsenosides and the possible underlying mechanisms in the treatment of IBD in an acetic acid-induced rat model by integrating metagenomics, metabolomics, and complex biological networks analysis. In the study ten ginsenosides in the ginsenoside fraction (GS) were identified using Q-Orbitrap LC-MS. Results: The results demonstrated the improvement effect of GS on IBD and the regulation effect of ginsenosides on gut microbiota and its co-metabolites. It was revealed that 7 endogenous metabolites, including acetic acid, butyric acid, citric acid, tryptophan, histidine, alanine, and glutathione, could be utilized as significant biomarkers of GS in the treatment of IBD. Furthermore, the biological network studies revealed EGFR, STAT3, and AKT1, which belong mainly to the glycolysis and pentose phosphate pathways, as the potential targets for GS for intervening in IBD. Conclusion: These findings indicated that the combination of genomics, metabolomics, and biological network analysis could assist in elucidating the possible mechanism underlying the role of ginsenosides in alleviating inflammatory bowel disease and thereby reveal the pathological process of ginsenosides in IBD treatment through the regulation of the disordered host-flora co-metabolism pathway.

Analysis of Free Amino Acids and Polyphenol Compounds from Lycopene Variety of Cherry Tomatoes (방울토마토 라이코펜 품종의 유리아미노산 및 폴리페놀 화합물의 분석)

  • Kim, Hyen-Ryung;Ahn, Jun-Bae
    • Culinary science and hospitality research
    • /
    • v.20 no.3
    • /
    • pp.37-49
    • /
    • 2014
  • In order to elucidate the usefulness of Lycopene, a cherry tomato variety, as a food material, the compositions of free amino acids, amino acid metabolites and polyphenol compounds were analyzed using HPLC and LC-MS/MS method. Lycopene contained eighteen free amino acids except for L-Cys and L-Try. L-Glu was the most abundant free amino acid, followed by L-Gln and L-Asp. The percentages of L-Glu, L-Gln and L-Asp of total free amino acid were 55.5%, 15.9% and 9.9% respectively. Lycopene contained essential amino acids with the exception of tryptophan. The following amino acid metabolites were found : ${\gamma}$-aminobutyric acid(GABA), carnitine(L-Car), o-phosphoethanolamine(o-Pea), hydroxylysine(Hyl) phosphoserine (p-Ser), N-methyl-histidine(Me-His), ethanolamine($EtNH_2$). Especially, GABA known as a neurotransmitter was present at a high level(305.99 mg/100 g dry weight). We identified the following polyphenol compounds in the cherry tomatoes : caffeic acid-hexose isomer I (CH I), caffeic acid-hexose isomer II (CH II), 3-caffeoylquinic acid(3-CQA), 5-caffeoylquinic acid(5-CQA), caffeoylquinic acid isomer(CQAI), quercetin-hexose-deoxyhexose-pentose(QTS), quercetin-3-rutinoside(Q-3-R), di-caffeoylquinic acid(di-CQA), tri-caffeoylquinic acid(tri-CQA), naringenin chalcone(NGC). Large quantities of Q-3-R and NGC known as bioactive compounds were found. These results revealed that Lycopene variety contained various nutritional and bioactive compounds and would be a potent functional food material.

Contents of Monosaccharides in the Hydrolysates of Some Forest Soil Horizons (삼림토양(森林土壤)의 층위별(層位別) 가수분해물중(加水分解物中) 단당류(單糖類)의 함량(含量))

  • Kim, Jeong-Je;Jang, Yong-Seon;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.191-196
    • /
    • 1989
  • Monosaccharide content of four forest soils were analyzed. Two soils under coniferous forest trees and another two under duciduous forest trees of Mts. Zeombong and Odae in Kangweon-Do were sampled from the surface horizon down into the subhorizons. 1. The largest amount of monosaccharide is found in the surface organic horizon of each soil and with increasing depth the amount decreases as might be expected considering total organic matter content. 2. Hexoses (galactose, glucose, mannose) predominate over pentoses (arabinose, ribose, xylose) and deoxyhexoses (fucose, rhamnose), the latter being in the smallest amount. Glucose is the most abundant monosaccharide in all samples regardless of vegetation of soil or depth. In general the content of each monosaccharide follows the order of glucose > manrtose > galactose > arabinose > xylose > rhamnose > fucose > ribose. 3. Very little amount of ribose is present even in organic horizons of coniferous forest soils. In samples taken from deciduous forest soils ribose is virtually absent. 4. The relative proportion of monosacchaiide to the total soil organic matter decreases with increasing depth, which may be resulted from the effect of prolonged humification. The total monosaccharide in the organic surface layer amounts to 27-50% of the total organic carbon or 15.7-29% of the total organic matter. Hexoses alone take the largest share of 20-38% of the carbon, or 12-22% of the organic matter.

  • PDF

Production of Fructose 6-Phoschate from Starch Using Thermostable Enzymes (내열성 효소를 이용한 전분으로부터 6-인산과당의 제조)

  • Kwun, Kyu-Hyuk;Cha, Wol-Suk;Kim, Bok-Hee;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.345-350
    • /
    • 2007
  • Phosphosugars are found in all living organisms and are commercially valuable compounds with possible applications in the development of a wide range of specialty chemicals and medicines. In carbohydrate metabolism, fructose 6-phosphate (F6P) is an essential intermediate formed by phosphorylation of 6' position of fructose in glycolysis, gluconeogenesis, pentose phosphate pathway and Calvin cycle. In glycolysis, F6P lies within the glycolysis metabolic pathway and is produced by isomerisation of glucose 6-phosphate. For large-scale production, F6P could be produced from starch using many enzymes such as pullulanase, starch phosphorylase, isomerase and mutase. In enzymatic reactions carried out at high temperatures, the solubility of starch is increased and microbial contamination is minimized. Thus, thermophile-derived enzymes are preferred over mesophile-derived enzymes for industrial applications using starch. Recently, we reported the production of glucose 1-phosphate (G1P) from starch by Thermus caldophilus GK24 enzymes. Here we report the production of F6P from starch through three steps; from starch to glucose 1-phosphate (glucan phosphorylase, GP), then glucose 6-phosphate (phosphoglucomutase, GM) and then F6P (phosphoglucoisomerase, GI). Using 200 L of 1.2% soluble starch solution in potassium phosphate buffer, 1,253 g of G1P were produced. Then, 30% yields of F6P were attained at the optimum reaction conditions of GM : G1 (1 : 2.3), 63.5$^{\circ}C$, and pH 6.85. The optimum conditions were found by response surface methodology and the theoretical values were confirmed by the experiments. The optimum starch concentrations were 20 g/L under the given conditions.

Physicochemical Properties and Antioxidant Activities of Maillard Reaction Products from Defatted Hydrolyzed Soybean Protein with Various Sugars (탈지대두단백 산 가수 분해물과 당의 반응에 의하여 생산된 Maillard Reaction Products의 이화학적 특성 및 항산화성)

  • Kim, Yoon-Sook;Moon, Ji-Hye;Kim, Myung-Hee;Choi, Hee-Don;Park, Yong-Kon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.1
    • /
    • pp.62-69
    • /
    • 2009
  • Maillard reaction products (MRPs) were produced from aqueous solution of various sugars with defatted hydrolyzed soybean protein (DFHSP) with different temperatures and pressures. Physicochemical properties of MRPs were investigated; also, DPPH and hydroxyl radical scavenging activity and sensory properties were evaluated. MRPs from ribose and DFHSP had the highest reactivity with larger pH reduce, higher browning index increase and higher antioxidant activity than other MRPs from other sugars. The antioxidant activities were increased with increasing temperatures and pressures of reaction. The highest antioxidant activity and sensory preference were obtained from MRPs with ribose at $140^{\circ}C$ with 2.8 kg/$cm^2$ for 30 mins.