• Title/Summary/Keyword: pentagalloyl glucose

Search Result 7, Processing Time 0.018 seconds

Inhibitory Effect of Hydrolysable Tannins Isolated from the Euphorbia helioscopia on Mushroom Tyrosinase Activity in vitro (대극과식물 등대풀로부터 분리한 가수분해형 탄닌의 tyrosinase 활성 억제효과)

  • 김진준;이주상;김소영;김정아;정시련
    • YAKHAK HOEJI
    • /
    • v.45 no.2
    • /
    • pp.214-219
    • /
    • 2001
  • Nineteen hydrolysable tannins isolated from the Euphorbia helioscopia (Euphorbiaceae) were tested for the inhibitory effect on mushroom tyrosinase activity in vitro. Inhibitory effect of gallotannin group exhibited more potent than that of phenolcarboxylic acid and ellagitannin groups against the enzyme activity. The inhibitory activity by pentagalloyl glucose on mushroom tyrosinase was more potent ($IC_{50}$/, 4.9 $\mu$M) than that of kojic acid ($IC_{50}$/, 8.7 $\mu$M).

  • PDF

Screening of Phenolic Compounds with Inhibitory Activities against HMG-CoA Reductase (페놀 화합물로부터 HMG-CoA reductase 저해 활성 물질 탐색)

  • Son, Kun Ho;Lee, Ju Yeon;Lee, Jeong Soon;Kang, Sam Sik;Sohn, Ho Yong;Kwon, Chong Suk
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.325-333
    • /
    • 2017
  • High level of plasma cholesterol is strongly associated with the development of atherosclerosis and coronary heart disease. Clinical trials designed to reduce plasma cholesterol level by diet or pharmacological intervention have resulted in marked reduction of disease incidence. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase which reduces cholesterol biosynthesis in the liver is the key enzyme of the mevalonate pathway that produces cholesterol. In this study, 71 naturally occurring phenolic compounds were tested for inhibitory activities against HMG-CoA reductase. Eleven compounds out of 71 showed inhibitory activities: three hydrolyzable tannin (geraniin, acetonyl geraniin and pentagalloyl ${\beta}-D-glucose$), four benzoic acid derivatives (benzoic acid, trans-cinnamic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid), and four naphthoquinone derivatives (1,2-naphthoquinone, 1,4-naphthoquinone, plumbagin and shikonin). At the concentration of $10{\mu}g/ml$, 1,4-naphthoquinone inhibited HMG-CoA reductase by 99.4%, and then plumbagin 91.4%, pentagalloyl ${\beta}-D-glucose$ 46.6%, 2,4-dihydroxybenzoic acid 40.9%, shikonin 37.7%, 1,2-naphthoquinone 36.6%, trans-cinnamic acid 32.0%, acetonyl geraniin 30.2%, benzoic acid 28.5%, geraniin 28.3% and 2,5-dihydroxybenzoic acid 22.3%, respectively. $IC_{50}$ values of 1,4-naphthoquinone and plumbagin was $2.1{\mu}g/ml$ and $5.8{\mu}g/ml$, respectively.

Nematicidal Compounds from the Leaves of Schinus terebinthifolius Against Root-knot Nematode, Meloidogyne incognita Infecting Tomato

  • Abdel Bar, Fatma M.;Ibrahim, Dina S.;Gedara, Sahar R.;Abdel-Raziq, Mohammed S.;Zaghloul, Ahmed M.
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.272-283
    • /
    • 2018
  • The root-knot nematode, Meloidogyne incognita caused a serious damage to many plants. The phenolic components of the leaves of Schinus terebinthifolius were investigated as potential nematicidal agents for M. incognita. Nine compounds were isolated and characterized as viz., 1,2,3,4,6-pentagalloyl glucose (1), kaempferol-3-O-${\alpha}$-L-rhamnoside (Afzelin) (2), quercetin-3-O-${\alpha}$-L-rhamnoside (Quercetrin) (3), myricetin (4), myricetin-3-O-${\alpha}$-L-rhamnoside (Myricetrin) (5), methylgallate (6), protocatechuic acid (7), quercetin (8), and gallic acid (9) using nuclear magnetic resonance (NMR) spectroscopy. Compound 1 showed pronounced nematicidal activity compared to Oxamyl as a positive control. It showed the lowest eggs-hatchability (34%) and the highest mortality in nematode population (21% after 72 hours of treatment) at a concentration of $200{\mu}g/mL$. It exhibited the best suppressed total nematode population, root galling and number of eggmasses in infected tomato plants. The total carbohydrates and proteins were also significantly induced by 1 with reduction in total phenolics and increase in defense-related proteins. Thus, compound 1 could be a promising, more safe and effective natural nematicidal agent for the control of root-knot nematodes.

Phenolic Constituents from the Flowers of Hamamelis japonica Sieb. et Zucc.

  • Yim, Soon-Ho;Lee, Young Ju;Park, Ki Deok;Lee, Ik-Soo;Shin, Boo Ahn;Jung, Da-Woon;Williams, Darren R.;Kim, Hyun Jung
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.162-169
    • /
    • 2015
  • Hamamelis japonica (Hamamelidaceae), widely known as Japanese witch hazel, is a deciduous flowering shrub that produces compact clumps of yellow or orange-red flowers with long and thin petals. As a part of our ongoing search for phenolic constituents from this plant, eleven phenolic constituents including six flavonol glycosides, a chalcone glycoside, two coumaroyl flavonol glycosides and two galloylated compounds were isolated from the flowers. Their structures were elucidated as methyl gallate (1), myricitrin (2), hyperoside (3), isoquercitrin (4), quercitrin (5), spiraeoside (6), kaempferol 4'-O-β-glucopyranoside (7), chalcononaringenin 2'-O-β-glucopyranoside (8), trans-tiliroside (9), cis-tiliroside (10), and pentagalloyl-O-β-D-glucose (11), respectively. These structures of the compounds were identified on the basis of spectroscopic studies including the on-line LCNMR-MS and conventional NMR techniques. Particularly, directly coupled LC-NMR-MS afforded sufficient structural information rapidly to identify three flavonol glycosides (2 - 4) with the same molecular weight in an extract of Hamamelis japonica flowers without laborious fractionation and purification step. Cytotoxic effects of all the isolated phenolic compounds were evaluated on HCT116 human colon cancer cells, and pentagalloyl-O-β-D-glucose (11) was found to be significantly potent in inhibiting cancer cell growth.

Isolation and Structure Determination of Antioxidants from the Root of Paeonia lactiflora (작약(芍藥)(Paeonia lactiflora) 뿌리로부터 항산화활성 물질의 분리)

  • Bang, Myun-Ho;Song, Jung-Choon;Lee, Sang-Yang;Park, Nam-Kyu;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.170-175
    • /
    • 1999
  • On the purpose of development of novel antioxidative compounds from natural sources, 38 plants expected to show antioxidant activity have been examined concerning DPPH radical scavenging activity. Among them, thirteen plants, including Paeoniae radix, the root of Paeonia lactiflora, exhibited the activity. In order to isolate active component, the root was extracted in 80% aqueous MeOH and solvent fractionated with EtOAc, n-BuOH and water, successively. Silica gel column chromatographies of the EtOAc and n-BuOH fraction exhibiting antioxidant activity. were repeatedly carried out with monitoring by DPPH assay to afford three active compounds. On the basis of spectral data and the chemical characteristics, the structures of the compounds were determined as (+)-catechin, $1,2,3,4-tetragalloyl-6-digalloyl-{\beta}-D-glucose$ and $1,2,3,4,6-penta-galloyl-{\beta}-D-glucose$.

  • PDF

Isolation of $5{\alpha}-reductase$ Inhibitors from Euphorbia jolkinii (암대극의 $5{\alpha}-reductase$ 활성 억제물질)

  • Park, Sung-Hee;Kim, Jeong-Ah;Xu, Guang-Hua;Lee, Chong-Gu;Choi, Ji-Young;Oh, In-Suk;Son, Ae-Ryang;Chung, See-Ryun;Lee, Seung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.1 s.140
    • /
    • pp.9-16
    • /
    • 2005
  • Twenty eight compounds were isolated from the whole plant of Euphorbia jolkinii and evaluated for inhibitory effect on $5{\alpha}-reductase$ activity. Among the tested compounds, 1-desgalloyl eugeniin, hippomanin A, euphorbin D, exocoecarianin, rugosin E, and pentagalloyl glucose showed potent inhibitory effect on the enzyme activity. The inhibitory potency of rugosin E and euphorbin D, which are dimeric ellagitannins on $5{\alpha}-reductase$ activity, was 7-to 8-fold stronger than that of ${\gamma}-linolenic$ acid.

Photoprotective Potential of Penta-O-Galloyl-β-D-Glucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin

  • Kim, Byung-Hak;Choi, Mi Sun;Lee, Hyun Gyu;Lee, Song-Hee;Noh, Kum Hee;Kwon, Sunho;Jeong, Ae Jin;Lee, Haeri;Yi, Eun Hee;Park, Jung Youl;Lee, Jintae;Joo, Eun Young;Ye, Sang-Kyu
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.982-990
    • /
    • 2015
  • Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-${\kappa}B$ signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.