• Title/Summary/Keyword: pentachloroanisole

Search Result 3, Processing Time 0.018 seconds

Effect of Nutrient Nitrogen on the Degradation of Pentachlorophenol by White Rot Fungus, Phanerochaete chrysosporium

  • Chung, Nam-Hyun;Kang, Gu-Young;Kim, Gyu-Hyeok;Lee, Il-Seok;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.704-708
    • /
    • 2001
  • The effect of nutrient nitrogen on the degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in a liquid culture was investigated. PCP disappeared at almost the same rate in both nutrient nitrogen-sufficient (NS) and -limited (NL) sttionary cultures. However, more pentachloroanisole (PCA) was accumulated in the NS culture than in the NL culture. The effect of nitrogen on the degradation of PCA was also tested in both cultures. PCA disappeared faster in the NL culture than in the NS culture, indicating that the lower accumulation of PCA during the degradation of PCP in the NL culture was due to the faster degradation of PCA in the NL culture than in the NS culture. In another experiment, PCA was added to shaking cultures rather than stationary cultures to search for any other metabolite(s). While no other metabolite but PCA was found in the NS stationary culture, 2,4,5,6-tetrachloro-2,5-cyclohexadiene-1,4-dione(TCHD) was found as the only indentifiable product in the NL shaking culture. Thus, PCP would appear to be metabolized to TCHD via PCa or directly oxidized to TCHD by lignin peroxidase. Since all the above results indicate that no innocuous metabolite was formed during the degradation of PCP by the fungus, it is quite feasible to use the fungus in the biotreatment of PCP.

  • PDF

Biodegradation of Pentachlorophenol by Various White Rot Fungi (수질분해균(水質分解菌)에 의한 Pentachlorophenol의 미생물분해(微生物分解))

  • Choi, In-Gyu;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 1998
  • In this research, 7 species of white rot fungi were used for determining the resistance against pentachlorophenol (PCP). Three fungi with good PCP resistance were selected for evaluating the biodegradability, and biodegradation mechanism by HPLC and GC/MS spectrometry. Among 7 fungi, there were significant differences on PCP resistance on 4 different PCP concentrations. In the concentrations of 50 and 100ppm ($\mu$g of PCP per g of 2% malt extract agar), most fungi were easily able to grow, and well suited to newly PCP-added condition, but in that of more than 250ppm, the mycelia growths of Ganoderma lucidum 20435, G. lucidum 20432, Pleurotus ostreatus, and Daldinia concentrica were significantly inhibited or even stopped by the addition of PCP to the culture. However, Trametes versicolor, Phanerochaete chrysosporium, and Inonotus cuticularis still kept growing at 250ppm, indicating the potential utilization of wood rot fungi to high concentrated PCP biodegradation. Particularly, P. chrysosporium even showed very rapid growth rate at more than 500ppm of PCP concentration. Three selected fungi based on the above results showed an excellent biodegradability against PCP. P. chrysosporium degraded PCP up to 84% on the first day of incubation, and during 7 days, most of added PCP were degraded. T. versicolor also showed more than 90% of biodegradability at 7th day, and even though the initial stage of degradation was very slow, I. cuticularis has been approached to 90% at 21 st day after incubation with dense growing pattern of mycelia. Therefore, the PCP biodegradability was definitely dependent on the rapid suitability of fungi to newly PCP-added condition. In addition, the PCP biodegradation by filtrates of P. chrysosporium, T. versicolor, and I. cuticularis was very minimal or limited, suggesting that the extracellular enzyme system may be not so significantly related to the PCP biodegradation. Among the biodegradation metabolites of PCP, the most abundant one was pentachloroanisole which resulted in a little weaker toxicity than PCP, and others were tetrachlorophenol, tetrachloro-hydroquinone, benzoic acid, and salicylic acid, suggesting that PCP may be biodegraded by several sequential reactions such as methylation, radical-induced oxidation, dechlorination, and hydroxylation.

  • PDF