• Title/Summary/Keyword: penetration welding

Search Result 355, Processing Time 0.023 seconds

Control of Bead Geometry in GMAW (GMAW에서 비드형상제어에 관한 연구)

  • 이재범;방용우;오성원;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1997
  • In GMA welding processes, bead contour and penetration patterns are criterion to estimate weld quality. Bead geometry is commonly defined with width, height and depth. When weaving is taken into account, selection of welding conditions is known to be difficult. Thus, empirical or trial-and-error method are usually introduced. This study examined the correlation of welding process variables including weaving parameters with bead geometry using srtificial neural networks(ANN). The main task of the Ann estimator is to realize the mapping characteristics from the sampled welding process variables to the actual bead geometry through training. After the neural network model is constructed, welding process variables for desired bead geometry is selected by inverse model. Experimental varification of the inverse model is conducted through actual welding.

  • PDF

Development of an algorithm for Controlling Welding Bead Using Infrared Thermography (적외선 카메라를 이용한 용접비드를 제어하기 위한 알고리즘 개발)

  • ;;;;;Y.Prasad
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.55-61
    • /
    • 2000
  • Dynamic monitoring of weld pool formation and seam deviations using infrared vision is described in this paper. Isothermal contours representing heat dissipation characteristics during the process of arc welding were analysed and processed using imaging techniques. Maximum bead width and penetration were recorded and the geometric position in relation to the welding seam was measured at each sampling point. Deviations from the desired bead geometry and welding path were sensed and their thermographic representations were digitised and welding path were sensed and their thermographic representations were digitised and subsequently identified. Evidence suggested that infrared thermography can be utilized to compensate for inaccuracies encountered in real-time during robotic arc welding.

  • PDF

Optimal Selection of the Welding Parameter for Base material of A16061 by Using MIG Welding Method (MIG용접을 이용한 A16061의 최적용접조건의 선정)

  • 최용기;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.269-274
    • /
    • 1999
  • Aluminum alloy has not only physical characteristic of very high activated high thermal conductivity and high thermal coefficient expansion but also special characteristic of great difference fusibility of hydrogen between liquid and solid phase. Because of these reasons, Aluminum welding is very different. Therefore, only MIG welding method should be applied instead of other welding methods. In this study, in order to select optimal welding conditions, it has been to investigate the effectiveness on the welding current, welding speed, flow rate of gas and welding voltage to occurrence of spatters, external shape of bead, state of penetration and width and hight of bead by using filer metal of A15356(dia. 1.21mm) on the base material of A16061.

  • PDF

Characterization of electron beam (EB) welds for SUS310S

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.360-360
    • /
    • 2011
  • In this work, SUS310S used for valve plate assembly was electron beam (EB) welded to determine the influence of the parametric conditions on the characteristics of the weld and to minimize porosity and micro-fissures among others. The evolution in the weld geometry and microstructure was examined as a function of the process conditions such as beam current and focusing current under a constant welding speed and accelerating voltage. The integrity of the EB welds in SUS310S was examined for defects (e.g. cracking, porosity, etc.), adequate penetration depth, and tolerable weld width deviation for the various welding conditions. Optical microscopy (OM), x-ray photoelectron spectroscopy analysis (XPS), scanning electron microscopy (SEM) and 3D micro-computed tomography (Micro-CT) for the cross section analysis of the electron beam welded SUS310S were utilized. The tensile strength and hardness were analyzed for the mechanical properties of the EB weld. At the 6 kV accelerating voltage, it was determined that a satisfactory penetration depth and desirable weld width deviation requires a beam current of 30 mA and a focusing current of 0.687 A at the welding speed of 25 mm/sec.

  • PDF

Effect of Coating Weight on the Laser Weldability in the Welding of Aluminized Steels (레이저용접에서 알루미늄 도금량이 용접성에 미치는 영향)

  • Kim Ki Chol;Cha Joon Ho
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Laser weldability of aluminized steels for deep drawing application has been investigated. Test coupons for Nd:YAG laser welding and $CO_2$ laser welding were prepared trom the commercial steels. According to the test results, total penetration and back bead width of aluminized steels were sensitive to the welding conditions. Bead width at the half thickness of the overlap joint, however, was rather constant. Laser weldability of aluminized steels was superior to that of zinc coated steel. Weld microstructure revealed that overlap zone adjacent to the fusion line was filled with coated materials, which was thought to be desirable to protect weld from crevice corrosion. The aluminum coated materials was also found in the weld metal. Practically no spattering was observed in the laser welding of aluminized steels even when the welding was performed without joint gap. In the welding of zinc coated steel, however, spattering was so severe that it was difficult to get the acceptable weld. Bead quality of aluminized steel laser weld was smooth and stable.

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

An Evaluation on the Weldability of Al-Li Alloys by Varestraint Testing Method (Varestraint Test법에 의한 Al-Li합금의 용접성 평가)

  • 김형태;이창배;신현식;서창제
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.48-57
    • /
    • 1996
  • The weldability of high purity aluminum-lithium binary alloys has been investigated using the Varestraint test. Autogenous GTAW (gas-tungsten-arc-welds) were run along specimens of different lithium concentration using three sets of welding parameters. Welding voltage was held constant at 10 volts. Welding current (70∼100 amps) and travel speed (23∼33 cm/min) were the parameter varied. Hot-tearing susceptibility varied with lithium content and exhibited a steep peak at 2.6 weight percent lithium. Depth of penetration increased with increasing heat input and lithium concentration. The susceptibility is influenced by the wettability of dendrites by the interdendritic eutectic liquid as well as the time available for back-Siting by eutectic liquid. The welding condition of welding current 70A and travel speed 23 cm/min was showed good resistance to cracking in aluminum-lithium alloys. Suggestions for improving weld cracking resistance are also provided.

  • PDF

Effect of Spot Welding Conditions on Spatter and Mechanical Strength Properties (스패터 및 기계적 강도특성에 미치는 점용접 조건의 영향)

  • 서도원;윤호철;전양배;임재규
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Spot welding is a process that sheet metals are joined in one or more spot by heating at the faying interface. In this process, the spatter is dispersed from melted area. It has been reported that spatter generation has adverse effects on weld quality. However, no systematic study has been carried out to find out its effect on weld quality in resistance spot welding processes. In this study, specially designed specimen are used to perform experimental investigation of spatter generation and its effect. Major finding of this study show trends in tensile-shear strength for various amounts of spatter generated during spot welding process. Thus, optimum welding conditions are proposed in view of spatter generation and tensile-shear strength. (Received December 11, 2002)

APPLYING LASER-ARC HYBRID WELDING TECHNOLOGY FOR LAND PIPELINES

  • Booth, G-S;Howse, D-S;Woloszyn, A-C;Howard, R-D
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.169-175
    • /
    • 2002
  • World demand for natural gas has generated the need for many new land transmission pipelines to be installed in the next decade or so. Although mechanized gas metal arc welding is well developed, there are opportunities for cost savings by using alternative welding processes. Hybrid Nd:YAG laser - gas metal arc welding enables fibre optic delivery of the laser energy to a robotic welding head to be combined with the addition of extra energy and a consumable to produce good quality, deep penetration welds in a single pass. The present paper describes initial procedure development to optimize the laser and gas metal arc welding parameters for making joints in pipeline steel. Satisfactory joint quality was obtained and it is intended to develop the process to prototype field trials.

  • PDF

Analysis of Welding Distortion for Laser Welded Sheet Metal Structures of Aluminum Alloy (레이저용접에 의한 알루미늄 박판구조물의 용접변형 해석)

  • Kwon, Ki-Bo;Kim, Jae-Woong;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.44-51
    • /
    • 2009
  • In this study, welding distortion analysis is performed for various design of tube shape structures which are assembled with aluminum sheet metal. Aluminum 5052 plates of 1mm thickness are used to analyze. An efficient keyhole model, as a welding heat source, is used for the prediction of full penetration weld size and shape which is required for the thermal analysis. The thermal and mechanical material properties are considered as temperature dependent functions, due to the high temperature variations during the welding. The numerical model is calculated by using a commercial software and evaluated with the experiments. The calculation results could make a comparative study in the view of distortion for the various size and shape of structure.