• 제목/요약/키워드: penetration pattern

검색결과 159건 처리시간 0.029초

DYE PENETRATION AND SURFACE CHANGE OF ROOT CANAL WALL BY Nd : YAG LASER IRRADIATION (Nd:YAG 레이저 조사에 의한 근관벽의 색소 침투도 및 표면 변화에 관한 연구)

  • Lee, Kyoung-Beom;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.300-310
    • /
    • 1996
  • Recently, there have been attempts to obstruct the dentinal tubules and remove the smear layer by way of laser irradiation in the root canal during endodontic treatment. This treatment was designed to make the root canal to be nonporous. Using 33 extracted single rooted teeth, 30 teeth were divided into 3 groups (10 each), and 3 teeth were used as samples for SEM. Using Nd : YAG laser, the control group was not irradiated, experimental group l(1W group) was irradiated with 1W, 15pps, 15sec., 3 times, 6.7mJ and experimental group 2(3W group) was irradiated with 3W, 15pps, 15sec., 3 times 20mJ. Thereafter the roots were immersed in methylene blue for 8 hours, and the dye infiltration pattern was observed under stereomicroscope and canal wall surface change was observed under SEM. The results are as following ; 1. As a result of evaluating the dye infiltration rate of the apical and middle 1/3, there was significant difference between control group and 1W group, control group and 3W group and there was no significant difference between 1 W group and 3W group. 2. In each group, as a result of comparing the dye infiltration rate of the apical and middle 1/3, there was no significant difference in control and 1W group but significant difference in 3W group. 3. In the control group smear layer was scarecely found and many dentinal tubules were found to be open. 4. In the 1W group, the number of dentinal tubules were decreased and gradual changes of the dentin surface could be seen and 3W group, almost no dentinal tubules could be found and the dentin surface was changed a little more and showed signs of partial fusion.

  • PDF

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung;Kim, Kyoung-Su;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.8-16
    • /
    • 2010
  • The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Electrical Degradation Pattern Analysis according to XLPE Cable (XLPE 케이블의 전기적 열화 패턴 분석)

  • Min, Chi-Hyun;Gwak, Dong-Sun;Chun, Hyun-Kwon;Choi, Jin-Wook;Kim, Young-Suk;Kim, Sun-Gu;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제22권4호
    • /
    • pp.114-120
    • /
    • 2008
  • XLPE cable is using insulator for Cross Linked Polyethylene(XLPE), because insulation Performance is superior and easy comparatively. Need systematization of accident transaction for electrical equipment accident, It is no disposal standard for defect of manufacture and second to accidents. in this paper deals with the change of XLPE cable insulation. To understand the electrical properties of XLPE insulation. Made of XLPE block sample, Penetration fracture Sample and flashover sample. Ogura needles having tip radius of $10[{\mu}m]$ were inserted into each sample. AC voltage of 1[kV/sec] increased at 60[Hz] were apple to breakdown sample and flashover sample. AC voltages of 12[kV], 17[kV] at 60[Hz] were a lied to XLPE block sample. The electrical properties of specimens were measured were measured from initiation of tree and breakdown to their characteristics were analyzed.

Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria

  • Ahmed, Mehboob;Stal, Lucas J.;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1015-1025
    • /
    • 2014
  • Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

EFFECT OF TYPE AND CEMENTATION METHOD OF POST-CORE ON MICROLEAKAGE (포스트코어의 종류와 접착방법이 미세누출에 미치는 영향)

  • Yun Myoung-Jae;Lee Sun-Hyung;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제32권2호
    • /
    • pp.225-233
    • /
    • 1994
  • The restorations of the severely damaged teeth by post core have been increased with the developement of endodontic procedures. But high failure rates of these procedures being reported, various restorative modifications were induced for successful treatments. Cast post-core and prefabricated post with core buildups are choice of treatment. The main causes of failure of the restorations are the fracture of post and core, root fracture, and recurrent caries due to microleakage. Recently, the acid etching technique and the use of dentin bonding agent at tooth surface to reduce the possible microleakage at the tooth-restoration interfaces were introduced. The object of this study was to measure and compare the microleakage by the types and cementation methods of post-core. For this study, forty extracted human anterior teeth were selected for specimen. After cleansing and routine endodontic procedures, anatomic crowns of each specimen were removed at the level of 2mm above the cementoenamel junction. Canals were preparated for post insertion and specimens were divided into four groups randomly. Post-cores were fabricated according to method for each group. Microleakage was measured by length of dye penetration at the tooth-restoration interfaces with measuring microscope at 50 magnification. Oneway ANOVA and t-test were performed for statistical analysis of resulting data. The following results were obtained from this study. 1. There wert significant statistical differences in degree of microleakage between each group (p<0.01). 2. Cast post-core cemented with ZPC (Group I) showed the most severe microleakage pattern$(1.5547{\pm}0.0872mm)$, and cast post-core cemented with adhesive resin cement after tooth surface treatment with dentin bonding agent (Group II) showed the least microleakage $(0.1497{\pm}0.0872mm)$. 3. Group IV revealed less dye penetrations than group III, but no statistical significance was seen between two groups.

  • PDF

Printability of digital color ceramic ink on glazed surface of ink-jet printed ceramic tile (디지털 프린팅용 세라믹 잉크의 유약표면 인쇄적성 및 특성평가)

  • Kim, Jin-Ho;Hwang, Kwang-Taek;Cho, Woo-Seok;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제27권5호
    • /
    • pp.256-262
    • /
    • 2017
  • Digital ink-jet printing technology using ceramic ink, which is thermally stable at high temperature above $1000^{\circ}C$, has an advantage of eco-friendly process applicable to manufacturing products with an excellent durability and various designs. Recently, replacement from conventional manufacturing process to digital process using ink-jet printing technique has been significantly accelerated in ceramic tile industry. In this study, we investigated ink-jet printability of ceramic ink on ceramic tile. Cyan, magenta, yellow, black ceramic inks, which are digital primary color of ink-jet printing, were printed on glazed surface of ceramic tiles, and their printabilities were comparatively analyzed. High temperature sintering process is generally required for manufacturing ceramic products, thus effect of sintering process on printed pattern of ceramic ink was also investigated by analyzing ink penetration depth and ink dot area.

Dielectric Breakdown Analysis of Bone-Like Materials with Conductive Channels (전도채널을 갖는 뼈와 유사한 재료의 절연파괴 해석)

  • Lee, Bo-Hyun;Lin, Song;Beom, Hyeon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권6호
    • /
    • pp.583-589
    • /
    • 2011
  • The dielectric breakdown of bone-like materials subject to purely electric fields is investigated. In general, these materials consist of some layers with stronger dielectric strength and others with weaker dielectric strength in a parallel staggered pattern. The growth of the conductive channel is impeded during penetration of the weaker layer in the bone-like material because the electric-field concentration is relieved. The electric-field distribution around the head of the tubular channel is obtained from finite element analysis. The dielectric strength of the bone-like material is evaluated using the J integral, and some parameters affecting the dielectric strength are determined. It is shown that the J-integral values are reduced with an increase in the breakdown area in the weaker layer. It is also found that the ratio of the permittivity of the weaker layer to that of the stronger layer can strongly affect the dielectric breakdown.

Anatomical and biochemical Changes of Corn Roots Infected with Pratylenchus vulnus (사과뿌리썩이선충의 침입과 기주의 해부학적 및 생화학적 변화에 관한 연구)

  • 한혜림;한상찬;김용균
    • Korean journal of applied entomology
    • /
    • 제34권2호
    • /
    • pp.112-119
    • /
    • 1995
  • Anatomical and biochemical changes of the corn root injured by the root lesion nematode, Pratylenchus vulnus, were examined to understand the interactions between the nematode and the crop which can be applied to a breeding program for nematode-resistant crop. The nematode and the crop which can be applied to be a breeding program for nematode-resistant crop. The nematode entered the cortex of corn root through its epidemis. They moved to other cortical cells by breaking their cell walls. They, finally, gathered around the endodermis of the roots and the bases of the root hairs. Parasitism of the nematode formed cavities within the root tissues where the females laid eggs. Major root damage by the nematode occurred in the cortical cells where must cell walls were broken and crushed to form empty spaces. These empty spaces in the base of the root resulted in this breakdown. Damage-induced biochemical changes of the corn roots were analysed by their total protein patterns and esterase activities in both control and nematode-infected roots. Denaturing gel did not show any significant difference in the banding patterns between them. Esterase patterns and activities, also, were not significantly different between the infected and the control roots.

  • PDF

New curing method using gaseous oxidant on sweet potato (Ipomoea batatas)

  • Jin, Hyunjung;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.39-39
    • /
    • 2017
  • In Asia, sweet potato (Ipomoea batatas) is a very important crop for starch production. Approximately 74.3% of the total sweet potato production quantity is produced in Asia (FAO, 2014) and China is the largest producer of sweet potato. Post-harvest management is particularly important because it is difficult to maintain the quality as well as quantity of sweet potatoes. Despite the importance of post-harvest management, researches on sweet potato have been focused on production-related study such as breeding of new variety, improved techniques of cultivation, so there is limited research on storage after harvest. Curing is a normal practice after sweet potato harvest to promote wound healing and extend postharvest storage life. In Korea, harvested sweet potatoes are usually cured for 4 to 7 days at $30-33^{\circ}C$ and 80-95% relative humidity within one week. Since the optimum storage temperature of sweet potato is regarded as $15-20^{\circ}C$, additional facilities and costs are required to raise the temperature for curing. However, the majority of small farmers do not have the capacity to provide additional facilities and costs. This study was initiated to suggest a new curing method to accelerate the wound healing by applying chemical oxidation to the wound surface of sweet potato. Oxidative stress is known to play an important role in the synthesis of secondary metabolites including lignin. In addition, chemical oxidation can be applied to prevent spoilage caused by microorganisms. Powerful gaseous oxidant with excellent penetration ability and superior sterilization effect was selected for this study. Lignification, weight loss, and spoilage rate of artificially wounded sweet potatoes were investigated after oxidant fumigation. There were clear differences in morphological analysis such as lignification pattern, lignin deposition color, and continuity of lignified cell layers between oxidant-fumigated sweet potatoes and control. These results show that gaseous oxidant can be used to supplement or replace the curing practice, to improve shelf-life as well as curing cost reduction.

  • PDF

A Microstructural Design and Modeling of Neutron-Irradiated Materials (중성자 조사재의 미세구조 설계와 모델링)

  • Chang, Kunok
    • Applied Chemistry for Engineering
    • /
    • 제31권4호
    • /
    • pp.347-351
    • /
    • 2020
  • A material changes its physical and chemical properties through the interaction with radiation and also the neutrons, which is electronically neutral so that the penetration depth is relatively deeper than that of other radioactive way including alpha or beta ray. Therefore, the radiation damage by neutron irradiation has been intensively investigated for a long time with respect to the safety of nuclear power plants. The damage induced by neutron irradiation begins with the creation of point defects in atomic scale in the unit of picoseconds, and their progress pattern can be characterized by microstructural defects, such as dislocation loops and voids. Their morphological characteristics affect the properties of neutron-irradiated materials, therefore, it is very important to predict the microstructure at a given neutron irradiation condition. This paper briefly reviews the evolution of radiation damage induced by neutron irradiation and introduces a phase-field model that can be widely used in predicting the microstructure evolution of irradiated materials.