• 제목/요약/키워드: penetration energy

검색결과 634건 처리시간 0.035초

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구 (A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent)

  • 신현규;최용규;전보람;하주연
    • 한국산업보건학회지
    • /
    • 제25권1호
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.

중심의 유전체 막대가 있는 원통형공동의 전자파흡수 (EM WAVE PENETRATION INTO A CYLINDRICAL CAVITY WITH A CENTER DIELECTRIC-ROD)

  • 조철;이운동
    • 전기의세계
    • /
    • 제28권2호
    • /
    • pp.68-75
    • /
    • 1979
  • The penetration of an electro-magnetic wave through an aperture in a cylindrical structure with a center dielectric-rod is investgated. By using a standard mode matching procedure, the electrical and magnetic fields in a cavity are determined as a function of position inside the cavity and frequency of the incident field. For the given parameters, computed data are obtained and the results exhibited in form of amplitude curves of the nor malized field and energy densities of functions of position and frequency. Depending on the increase of the relative dielectric constant of center dielectric-rod, the resonance frequecies of the cavity vary as the cavity size decrease. The stored electro-magnetic energy varies very rapidly as a function of position inside the cavity and of the source frequency. Its peak value can be two orders of magnitude greater than the incident energy density. The frequencies where the peaks occur can be identified approximately as the resonance frequencies of the cavity.

  • PDF

산란 및 투과된 수소 이온의 분자 전산 연구 I. 니켈 (100) 표면의 직각 입사 (Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions I. Normal Incident Angle to Ni (100) Surface)

  • 서숭혁;민웅기
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.127-136
    • /
    • 2000
  • Molecular dynamics simulations have been carried out to investigate the scattering and penetration properties of hydrogen ions with the normal incident angle to Ni (100) surface. The initial kinetic energies of hydrogen ions range from 100 to 1,600 eV. The simulation results are used to assess the applicabilities of theoretical predictions based on the binary collision approximation, and, in the high kinetic regime, theoretical results for scattering energies were shown to he a good agreement with molecular simulations. The angle dependencies on both scattering and penetration distributions were found in the longitudinal direction, but not in the azimuthal direction except for the high kinetic energy of 1,600 eV.

  • PDF

A Theoretical Consideration on Oxygen Production Rate in Microalgal Cultures

  • Kim, Nag-Jong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권5호
    • /
    • pp.352-358
    • /
    • 2001
  • Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.

  • PDF

신재생에너지 밀집 연계 배전망의 DC화에 따른 효율성 분석 및 ESS 활용방안 검토 (Efficiency Analysis of DC application on RES concentrated distribution system and utilization plan for ESS)

  • 고보경;송성윤;신병윤;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.255-256
    • /
    • 2015
  • The increasing penetration of renewable energy based distributed generation(DG) sources in low-voltage grid feeders has been receiving increased attention. High penetration of renewable energy generation in a distribution system can cause power quality and efficiency problem. In this paper, the operating plan for ESS and the efficiency analysis on RES(Renewable energy source) concentrated distribution system.

  • PDF

초단파 레이저 조사시 티슈 열완화 시간 분석 (Analysis of Thermal Relaxation Time of Tissues Subject to Pulsed Laser Irradiation)

  • 김경한;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제12권2호
    • /
    • pp.17-25
    • /
    • 2009
  • Two methodologies for predicting thermal relaxation time of tissue subjected to pulsed laser irradiation is introduced by the calculation the optical penetration depth and by the investigation of the temperature diffusion behavior. First approach is that both x-axial and y-axial thermal relaxation times are predicted and they are superposed to achieve the thermal relaxation time (${\tau}_1$) for two-dimensional square tissue model. Another approach to achieve thermal relaxation time (${\tau}_2$) is measuring the time required for local temperature drop until $e^{-1}$ of the maximum laser induced heating.

  • PDF

Evaluation of Concrete Degradation Under Disposal Environment

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.260-268
    • /
    • 1997
  • The effects of three mechanisms, calcium depletion, sulphate and carbonate penetration, on the concrete degradation have been studied. The shrinking core model (SCM) and the HYDROGEOC. HEM (HGC) model have been applied to evaluate how fast the mechanisms proceed. The SCM is an analytical approximation model and the HGC is a numerical mass transport model coupled with chemical reaction. The SCM leads to more conservative results than the HGC, and turns out to be very useful in the viewpoint of simplicity and conservatism. During 300 years, calcium has been depleted within 10 cm from the concrete outer surface, and sulphate has penetrated less than 13.5 cm into the concrete. Carbonate has not penetrated own 7 cm into the concrete in contact with the bentonite, and, furthermore, its penetration into the concrete with the groundwater is negligible. Conclusively, the concrete is expected to maintain its integrity for at least 300 years that are regarded as institutional control period of intermediate and low-level radioactive waste repository.

  • PDF

텅스텐 중합금 복합관통자 제조 (Manufacturing of Tungsten Heavy Alloy Composites for Kinetic Energy Penetrator)

  • 송흥섭;김은표;박경진;류주하
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.369-375
    • /
    • 2004
  • A new concept of tungsten heavy alloy composite was suggested and manufactured in this study for the kinetic energy penetrator. The composite heavy alloy was composed of two parts, the center was molybdenum added heavy alloy compositions which were designed to promote the self-sharpening effect and outside was conventional heavy alloy in order to sustain the severe stress condition in the muzzle during the firing. The center part showed an intergranular and brittle mode at tungsten/tungsten interfaces by which self-sharpening effect could be activated. On the other hand, that of outside showed conventional ductile fracture mode under high strain rate condition. From the sub-scale penetration test, the depth of penetration in heavy alloy composites showed greater values than those of conventional tungsten heavy alloys. It is suggested that the heavy alloy composite could be considered as one of the future penetrator materials.

The Effect of Building Morphology on Sea Breeze Penetration over the Kanto Plain - Analysis of Mean Kinetic Energy Balance of Moving Control Volume along Sea Breeze -

  • Sato, Taiki;Ooka, Ryozo;Murakami, Shuzo
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2012
  • In order to use sea breezes to counter the heat island phenomena, i.e. to promote urban ventilation, it is necessary to clarify the effect of building morphology and height on large-scale wind fields. In this study, the sea breeze in the vicinity of the Kanto Plain in Japan is simulated using a mesoscale meteorological model incorporating an urban canopy model, and the inland penetration of sea breezes is accurately reproduced. Additionally, a mean kinetic energy balance within a domain (Control Volume; CV) moving along the sea breeze is analysed. From the results, it is clarified that the sea breeze is interrupted by the resistance and turbulence caused by buildings at the centre of Tokyo. The interruption effect is increased in accordance with the height of these buildings. On the other hand, adverse pressure gradients interrupt in the internal region.