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Abstract

The penetration of an electro-magnetic wave through an aperture in a cylindrical struc-

ture with a center dielectric-rod is investgated. By using a standard mode matching pro-

cedure, the electrical and magnetic fields in a cavity are determined as a function of po-

sition inside the cavity and frequency of the incident field. For the given parameters, co-

mputed data are obtained and the results exhibited in form of amplitude curves of the

nor malized field and energy densities of functions of position and frequency. Depending

on the increase of the relative dielectric constant of center dielectric-rod, the resonance

frequecies of the cavity vary as the cavity size decrease. The stored electromagnetic ener-

gy varies very rapidly as a function of position inside the cavity and of the source frequ-
ency. Its peak value can be two orders of magnitude greater than the incident energy de-
nsity. The frequencies where the peaks occur can be identified approximately as the

resonance frequencies of the cavity.

[. INTRODUCTION

A problem of considerable interest in EMP(el-
ectromagnetic pulse) and biological studies is the
penetration of an electromagnetic wave through
an aperture into a cylindrical cavity. Unfortu-
nately, it is also a problem of great difficulty
with little progress has been made even in the
most elementary situation. One of the earliest
works on this subject was done by A. Sommer-
feld in 1949 (1]. He considered a two dimension-
al problem where a circular cylinder with a lo-
ngitu dinal slot is illaminated by a normally
ncident plane wave. Using a Fourier analysis, th
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problem was reduced to that of a system of in--
finitely many linear equations and it was thou-
ght as an unpractical problem. Of course, mord--
ern computer facilities have changed this situati-
on. Related problems of radiation from a slot or-
an aperture on a cylinder have been even more.:
widely studied and extensive numerical results.
obtained [21~{7]. Very recently, the problems of
the penetration through an aperture in a cylind-
rical cavity has been studied (87~[12].

The purpose of the present paper is to study-
a problem similar to A. Sommerfeld’s but with:
a center dielectric-rod. As shown in Fig. I, a
cylindrical cavity with a center dielectric-rod is fi.
tted into an infinitely long cylinder. By using a
standard mode matching procedure, the problem.
is formulated and a system of infinitely many-
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linear equations derived. These are solved by co-
mputer for various truncations in order to deter-
mine the number required for consistent results.
By varying the relative dielectric constant of the
center dielectric-rod, the position inside the cavi-
ty and the source frequency, the resonance frequ
encies and the stored electromagnetic energy are

obtained.

[[. FIELD REPRESENTATION

Consider a infinitely long conducting cylinder
of radius a as shown in Fig. 1. The cylinderhas
a center dielectric-rod of radius & and two condu-
cting plates at z=~h in its interior. On the surf-
ace of the cylinder, a rectangular aperture of di-
mension 2¢x2d is centered at x=a, =0, =z=0,
where the width 2c is assumed to be small in te-
rms of wavelength, i.e.,

2kc<1 @.n
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Fig. 1. Geometry of infinitely long conducting
cylinder with a coaxial neter dielectricrod
which has cavity in its intericr and ape-
rture in its surface.

The cylinder is illuminated by a normally inci-
dent plane wave described by

E=pei**

— s €0 g 2
H=—3 \/ - (2.2)
where the time factor exp(+ ju#) has been dro-

pped.

As usual in problems of this type, we express
the fields in terms of TE and TA{ potential vec-
tors that have only = components
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TE: F=& (2.3a)
TM: A=y (2.3b)
by the relations
RN o
E=—py (4)+ e PXPX(<) (2.4a)
. 1
H= px(z¥)+——p¥x E) 2.
7 () + o 7 XT Y SH) (2.4b)

Because of the assumption in (2.1),(2.2), we
may ignore the field variation along in the aper-
ture and only the TE field can exist in cavity. For
TE field, expanding Eqs (2.4a), {(2.4b) in cylind-
rical coordinates, the result is

_ 1 ar 1w
E= o 09 Hy= Jwy  0pdz
e T _ 1T .
E;= 50 Hy= e 5907 2.5)
Ez:() H:= 1 (k2+ azn );jr
Jwy 2?

The scalar Helmholtz equation is
(P2 +wlue)l =0 (2.6)
We can form solution to the Helmholtz equa-
tion in cylindrical ooordinates as
Jo(oka)] [T ) [ei*:*
w:{Y,..(pkp)} {e"""é} {e"'":'}
where k*=k.2+k.2 and {J,Y.)} are Bessel fun-

ctions.

2.7

We will express the fields in the aperture, inside
and outside the cylinder, in terms of appropriate
modes with unknown coefficients. By matching
the field at the interface p=a, matrix equations
are derived for the unknown coefficients.

First, consider the total field inside the cylind-
er.Because of the symmetry in incident field and
the geometry and the boundary conditions in ca-
vity, the total field E,H everywhere must have
following properties;

The symmetry conditions are
i) for —z<¢«<n, E,: odd Eg: even

H,:even Hs:odd in ¢

(2.8)
ii) for —h<z<h, E,:even Es: even
H,:0dd Hs:0dd in =
The boundary conditions in cavity are
i) at :=+h, E,=E; =0, E¢=E4=0
H,=H,=0
ii) at o=b, Es=FE4, H.=Ha. 2.9)

where subscript 1 denotes the field in dielect-
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ric-rod.
From (2.8) and (2.9), we derive

in dielectric-rod{p<b, |z|<h)
w’:;g) A pad w(pUyi)cos(mg) cos (2—7—22;1—1—)-”—
(2.10a)

in cavity (6<p<a, !zl<h)

V=35 53 Binsd (0Un) -+ Bra n(pUs)] cOS(m9)

COos

In1);
——”—ZJ%L-)—T—z (2.10b)

From (2.9), (2.10) and (2.5), we derive

IaloU, Y (oU,

- )

cos(mg) COSWZ (2.11)
where
X P=UnJ 0 U)W /(0 U) — U /(2 Ul W (6Us)
XanP=UpJ (6T, )Y /(6 U,)— U (6U)Y (b U,)

(2.12a)
z=wzlu0€°

kl=wiue (2.12b)

vl (DR, i g CrflE
_J\/ (2n+l)7z )z ke, _(&ijl)w_
(2.120)

the constant {B..} are te be determined.
From (2.11) and (2.5), we have

if k<

© ! » (oU,
B
cos(mg) cos—(gf—z%l-)f—z
(2.13a)
1 Jn(6U) _ Ya(pU,)
H,= Twit ?_Z‘)anU[ Xon® X a2 ]
cos(mqﬁ)-cos—(zn—;—}jl)—”—z
(2.13b)

To represent the field in aperture, it is most
convenient to regard, that tactically, the cylinder
wall has a small thickness such that the apert-

are is a rectangular waveguide with transverse
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dimension 2¢x2d, The potential for the TE field
may be represented by

U= lpll"l”lT cos—= (Ztn H)ﬂ 2[Ccosr.{p—a)+D.sinr,
(0—a)) 2.1

If (2.14) is substituted -into (2.5), the tangen-
tial components of the aperture field can be rea-

dily calculated with the results, valid for

o=a, 19l<o, |zl<d,
E=33D, cos 2t (2.152)
e
Ho=\/--35c, cos DT, (2. 15b)

where {C,} and {D,} are unknown constants to
e determined.

Finally, consider the field representation out-
side the cylinder. We define the total field there
as

=i+ (2.16)
The incident field potential #* is derived from
(2.2) by the Jacobi-Anger expansion

U/"'=J—.11%exp(jkp cos ¢)=—~17€~;

J o(ko)exp(jme)

2.17)
¥ is the reflected field from the cylinder at
p=a when the aperture is closed (c=d=0), and
may be derived from boundary condition at p=a

v 2 &1 .. _Jalak
r=—% 55 L j» A H(okcos(mg)
(2.18)
where e,.:{z if m=0
1 if m#%0

The third term ¥* in (2.16) is the scattered fi-
eld. By applying a Fourier integral instead of di-
screte modes, namely,

=Scos(mg)| o™ FAH.(pf)da (2.19)
where
T VE—a?, if k=a
ﬁ—{—jda——z—k if #<a

The function (F.(a)} are to be determined.
From (2.16), (2.19) and (2.5), we derive

E¢=':_ZD BCOS(?W)JLe i**F (@) Ha® (pf)da
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(2.20a)

= jzi,uo [%e”‘" 0s¢— -zj_i%}mf‘cos(mgb)
S 10 00 % | o
Fu(@)H(pg)da] (2.20b)

II. FIELD MATCHING

We expressed the fields in the aperture, inside
and outside the cylinder, in terms of appropriate
modes with unknown coefficients. By assump-
tion (2.1),(2.2), Hy; at p=a* and that at p=a-
are nearly zero, thus, we can match the field Eg,
H, at p=a, and the unknown coefficients can be
solved.

The matching of E¢ and H, at p=a is carried
out by Galerkin’s method [5]. Consider first the
matching of Ey; at p=a. From(2.13a) and(2.15a)
we find

Y., (oU,) ] cos(me)

ZZBMU[ In iog;) - X..®

@n+ 1)z 2n+1)z
cos =y F= =0(r) ZD cos————zd
@1
—rLpLn, —hLz<<h
where 2(r) is a characteristic function of the

.aperture.

Q(r)={1
0

Let us multiply the following operater to both
side of (3.1)

(7t o () (T o
oy )
2h

if » is in the aperture (3.2)

otherwise

This manipulation leads to

B’ [ Jp (aUv) . YP’(aUq) ]:,gwo}D”

X 1) qu(Z)
2sin(pc/a)  dag _
‘—P_m‘;— 3 7,9=0, 1,2 (3. 3a)
~where

@n-+1)r(—1) cos( —hi]
dne= (Zn-l-l) (2q+1)

af( g ) (L)

(3.3b)

g2t s R i d ) T — 71—

Similarly, matching of H, at p=a and Es, H,
at p=a*, we find

., 2 [ IulaU,) _ Y.(aU,
Bl [ Yl
sinfme/a)  degw
mela  d =C.
g=0,1,2ur-- (3.4)
8 Fya)H, > (af)= Z:D S‘n“’“ “) S )
p=0,1,2:0000 (3.5)
- [ expljka cosp)ag+32
_Inak) . sin(mec/a) 4(—1)°
H,»'(ak) H,*(ak) mc/a ] Cg+D=
1 sin(me/a) 1(>
+ kr}_; mcja df‘wda o)
B FW(a)H,® (a8)=C, ¢=0,1,2, e (3.6)
where
:—z(27z+l)(ml)"cos(ad) 1
Tila) —Tx@nF1)/2d 4 @7

From the four sets of equations (3.3), (3.4),
(3.5) and (3.6), we can derive a set of equations

whose only unknowns are {D,}. The result is
E_I: AmaDy=1,, G.8)
Apin= Ay 42,2 3.9a)

Amﬂ(x):%‘f:daﬁJm(a)Jn(a)

{Sﬁ( sin(lc/a) )-

=0 Ic/a

H,(Z)(aﬁ)
H " (ag) } (3.9b)

A, B T2C[a "‘26’/(1 ZUA.MA [Z( sin(sc/a) )_
€,

scla

( J(aU)X, @Y (aU) X, ® )} (3.9c)

J(eUDX,, P ~Y (e U)X, T

_ =Dk 1 (e,
1= Gt o 2oy L oexpika cos ¢) dg
_ i 2 . JSak) sin(ac/a) 1
n§=—:‘ €n’ H,®"(ap) H,%(ak; ncla

)
(3.10)

The infinite set of linear equations in (3.8)
will be truncated at an appropriate number by
moment method [4]). Once {D,} are solved from
(3.8), they may be used to calculate {B,,} from
(3.3 and then the field E¢, H, inside the cylinder
from (2.13)
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—_— £ Jﬂ’(pUn)an(Z)_Ym’(p U")Xmﬂ(l)
B Y G T XD ]

m,n=g

(2n4-Dz _, sin(me/a)
cos(mg) cos oh ¢ mc/a
2c e
Frhen %D,A,,. (3-11a)
H,=— 1 sz U,
Jwpts i
[ Jm(pUn)an(Z)_Ym(plj;)an(” ]
I’ (@U)X na@ Y o (aU) X
{2241z . sin(mc/a) 2¢
cos(mg) - cos 2h i mc/a anheén
5D (3.11b)
=0

As shown by (3.11), the Es and H, become in
finite at a set discrete frequencies k={ks}, whe-
re kpq is the root of the equation.

I (@aUD) X an® =Y u/(@U) X a =0 (3.12)
We identify {.} as the resonance frequencies
of TE modes in the cavity when the aperture is
absent. To circamvent this difficulty of infintie
(3.8) and (3.11), (3.8) must be modified in the
imanner descrived !below. At an exact resonance
frequency k=ky, (3.4) is rewritten as

LR Ul JulaUs) _ Y,(aU)

Fha=w=s S = oncay

myp nzg

inl
_sin(mc/a)_ _"f_+—}k—BnU«’

mcla
Jo(aUy) _ YlaUd) } sin(pc/a) 4 =C,
[ Xp® X1 ® pcla d
1=0,1,2, - (3.13)
From (3.13) and (3.3), we can derive
S AnDat7mBre=In m=0,1,2,- (3.14)
where

(3.15a)

An= A5 A

—_—2/a <5 _sin(sc/a) *_1_
IR S5 3 WA | ]

B ED scla €,
Tq 5P

) [ JaUDX,, 2 =Y (aU)X,, P Y

. 15b
TG =Y @)X 1)

of JalalUs) _ Y,(aU,)] sin(pc/a) due
7n=—Us [W Xpe™® pela d

(3.16)

Since the denominator of (3.15b) no longer con-
tains 2 factor given on the left hand side of (3.
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12). The set of linear equations in (3.14) now
replace (3.8). From the (3.14), {D.} and B,, are-
sloved, while the remaining {B..} are next calcu-
lated from (3.3).

[Vv. COMPUTED DATA AND DISCUSSION

Now, we will present a set of data of the ene--
rgy density distribution inside the cavity ‘calcul-
ated with the following parameters.

a=3.97cm b=1.57cm h=15.03cm

¢=0.183cm d=2.93cm (4.1)

For numerical computations, we truncate (3.10:
at n=5 (n=4, or a="5 is sufficient [11]).

With a specific set of values for parameters (4.
1), two sets of resonance frequencies are found.
One set of the resonance frequencies of the (TE,-
modes in the cavity, the other set includes all.
of the resonance frequencies in the aperture.

i) Resonance frequency of aperture

The resonance frequencies of the aperture is.
defined By

_ (2m—1)c,
fa= 4d

where ¢, is the velocity of light in free space.

4.2)

By given parameters of aperture the resonance:
frequencies are calculated as follows;
fy_ =2. 56Ghz 1
fo=7.68Ghz ™" L —"

[
Apertre !

w1 it i i '

t s i 7 3 o

Fig. 2. Resonance frequency spectrum of apertu--
re-cavity configuration in Fig. 1 with its
parameter specified in (4.1). e,=1, g=1.
(dielectric-rod).
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. Resonance frequency spectrum of apertu-
re-cavity configuration in Fig. 1 with its
parameter specified in (4.1). e,=4, u,=1
(dielectric-rod).

ii) Resonance frequency of cavity

From (3.12) the resonance frequencies of cavity
are caculated

I (@U) X wn? Y o (@U) X mn =0 3.12)

In Fig. 2, the resonance frequencies of the fir-
st nine TE modes are desplayed. The frequencies
next to [21), for example, are those which sati-
sfy (3.12) with p=2 and ¢=1. As shownin Fig.
2~Fig. 4, depending on the increase of the rela-
tive dielectric constant e, of center dielectric-rod,
the resonance frequencies of cavity vary as the
cavity size decrease.

iii) When input parameters are f=2.9 Ghz, e,
=4 (dielectricrod) and (4. 1), normalized electric fi
eld E; inside the cavity is plotted as a function
of p in Fig. 5. The electric field decrease rapidly
away from the aperture. In Fig. 6 and Fig. 7 no
rmalized electric field Es is plotted as a function
of ¢ and =, the peak values of E; are occured in

aperture region.
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Fig. 4. Resonance frequency spectrum of apertur
e-cavity configuration in Fig. 71 with its '
parameter specifed in (4.1). &=8, n=1
(dielectric-rod).

iv) In Fig. 8~Fig. 12, the normalized electric
and magnetic stored energy densities are present
ed as functions of source frequency f (2~4Ghz)
for five different locations inside the cavity. No-

rmalized cnergy densities defined by

Wr == EE
—_1H? 4.3
Walr == 1 )

As a function of the source frequency, W, and
W, assume local peaks approximately at the re-
sonance frequencies listed in Fig. 3 (resonance fr
eq. of cavity:1.92, 2, 35, 3.06, 3.40, 3.51, 3. 77,
3.89 Ghz, resonance freq. of aperture: 2. 56Ghz).
This phenomencn is clearly demonstrated in Fig
8. Their values of resonance frequencies are cl-
ose. Thus, the peak values of W, and Wa as fu
nction of the frequency, apear approximately at
the resonance frequencies of the cavity.

For f between 2 and 4Ghz, the absolute peak
of W.is about 312 (at f=3.60Ghz in Fig. 8).
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Fig. 6. Electric field E; inside cavity as function.
of p of ¢
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Fig. 8. Normalized energy densities inside cavity
due to incident field in (2.2) for paramet-
R ~ ers given in(4.).

Y DENSITY
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4.0 1.5 2.0 2,5 3.0 3.5 4.

0
Gl

Fig. 1v. Normalized energy densities inside cavity

due to incident field in (2.2) for parame
ters given in(4.1).

Fig. 9. Normalized energy densities inside cavity
due to incident field in (2.2) for parame-
ters given in(4.1).
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Fig. 11. Normalized energy densities inside cavi- Fig. 12. Normalized energy densities inside cavi-

ty due to incident field in(2.2) for par-
ameters given in(4.1).

Thus the energy density inside the cavity can be
two orders of magnitude larger than the incident
one and can be larger than the magnitude with-
out dielectric-rod(6](about 97 [12)).

A study of Fig. 8 through Fig. 12 shows that
the stored energy is a rapidly varying [unction
of position inside the cavity and of the source
frequency. It should be remarked that, in cons-
truction of those figures, W, and W, are calcu-
lated only at discrete frequencies(with an incre-
ment of 0.5 Ghz). Therefore, those figures show
only general variations of energy densities vers-
us frequency, but not the fine details. Fortuna-
tely, this calculation can be done with a reasona
ble amount of effort and computer time, as de-
monstrated in this paper.
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