• Title/Summary/Keyword: penetration angle

Search Result 332, Processing Time 0.022 seconds

Effect of Opening Pressure and Ambient Pressure on the Characteristics of Atomization in Early Stage of Diesel Spray (개변압 및 배압 변화가 디젤부문의 초기 미립화 특성에 미치는 영향)

  • 김종현;이봉수;이장희;구자예
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.56-62
    • /
    • 1999
  • The disintegration of transient diesel spray in early was investigated at different opening pressure and chamber pressure by measns of shadowgraph method using nanolite and still camera. Diesel spary was injected into the spray chamber which was charged with high pressure nitrogen gas. Atthe begining of injection, a liquid column that was almost the same diameter as the nozzle hole was observed . Spray tip penetration and spray angle were always increased with an increase in opening pressure.

  • PDF

BEHAVIOR OF LIQUID LPG SPRAY INJECTING FROM A SINGLE HOLE NOZZLE

  • PARK K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.215-219
    • /
    • 2005
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. A liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray injecting from single hole injector. Two different test conditions are given, which are a fully developed spray case with various injection pressures and a developing spray case with ambient pressure variation. The LPG spray photographs are compared with the sprays of gasoline and diesel fuel at the same conditions, and the spray angles and penetration lengths are also compared, and then the spray behavior is analyzed. The LPG spray photos show that the dispersion characteristic depends very sensitively on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure, but the angle is quickly reduced at the condition over the pressure. However, the down stream of the LPG spray shows much wider dispersion and less penetration than those of gasoline and diesel sprays regardless ambient pressure condition.

Spray and Evaporation Characteristics of DME fuel at the High pressure and temperature (고온 고압하에서의 DME 연료 분무 및 증발 특성)

  • Kim, Hyung-Jun;Suh, Hyun-Gyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • The purpose of this study is to analyze spray and evaporation characteristics of DME fuel at the high pressure and temperature. For the numerical analysis of dimethyl ether(DME) fuel spray characteristics, hybrid breakup model was applied to the DME spray and its breakup process. In order to obtain experimental results for comparison with the predicted ones, the visualization of the spray evolution process was executed by using a Nd:YAG laser. Also, the numerical investigation was conducted by the two hybrid models for primary and secondary breakup of the DME spray. The primary breakup model was used the Kelvin-Helmholtz(KH) breakup model. In the secondary breakup process, Rayleigh-Taylor(RT) and Drop Deformation Breakup(DDB) model was applied. The results of this study provide the macroscopic characteristics of the spray such as spray tip penetration and cone angle, and prediction accuracy of the two hybrid model.

  • PDF

An Investigation of Methanol and Methanol Blended Sprays Using Laser Scattering Images

  • Park, Wook;Park, Byung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1699-1710
    • /
    • 2001
  • The characteristics of methanol and methanol blended (M85) sprays were investigated under atmospheric conditions at various temperature, ranging from on-vaporizing to vaporizing ambient conditions (298∼353 K). From laser scattering images, the macroscopic characteristics of the spray, such as the spray tip penetration and the spray angle, were determined. Entropy concept was introduced to represent homogeneity and PIV analysis was adopted to determine the fluid dynamic information at each location of the spray. The correlation between entropy and vorticity strength enabled us to find their relations. The effect of ambient composition, mainly of viscous effect as affected by CO$_2$levels, was investigated using PIV and entropy analysis. Spray width and entropy value were found to tend to decrease at increased CO$_2$levels.

  • PDF

Measurement of Spray Characteristics for Gasoline Injector Using the Image Processing Technology (화상처리 기술을 이용한 가솔린 인젝터의 분무 특성 측정)

  • Lee, K.H.;Lee, C.S.;Lee, C.H.;Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • A this experimental study is executed to analyze spray characteristics for air-shrouded injector and 4hole 2spray type injector used in a gasoline engine. Since spray parameters including spray penetration and angle, SMD, and atomization characteristics are very important to increase the engine performance, the image processing algorithm for measuring the non-spherical spray diameter is developed. Spray characteristics of the air-shrouded injector(2hole 2spray) and 4hole-2spray injector are analyzed respectively by this digital image processing method. Effective spray characteristics to injectors is derived from this experimentation and obtained the design guide for gasoline injector.

  • PDF

ANALYSIS OF THE SUITABLE INJECTION PRESSURE FOR DIESEL INJECTION WITH HIGH PRESSURE

  • JEONG D. Y.;LEE J. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2005
  • Spray patterns were visualized using the shadowgraph method, and the droplet size and velocity were measured using PDPA for high-pressure injections up to 2,600 bars. The spray pattern and spray characteristics, such as penetration, spray width, spray angle, droplet size, injection duration, and droplet velocity, were investigated to determine the suitable injection pressure. Spray penetration, width, angle, and velocity increased continuously up to 2,600 bars with the injection pressure in a high-pressure region. The rate of improvement of the above spray characteristics, however, declined rapidly, when the injection pressure reached 2,000 bars. The injection duration and droplet size generally decreased with the increase in the injection pressure, while the rate of improvement decreased abruptly after 2,000 bars. Consequently, the improvement rate of the spray characteristics became blunt at over 2,000 bars. This means that the suitable injection pressure is around 2,000 bars.

Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System (CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구)

  • Park, A-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.

Evaluation of solid surface properties by analysis of liquid penetration rate into powder bed - Examination of surface free energy -

  • Choi, Woo-Sik;Ha, Jong-Hak
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.236.1-236.1
    • /
    • 2003
  • Evaluation of solid surface properties is very important for formulation of solid dosage form, specially insoluble drugs. The contact angle of insoluble drugs was measured by the penetration rate into powder bed using Washburn equation and wicking method. From the measured contact angle data, the surface free energy value of pharmaceutical powders ${\gamma}$s was divided and analysized into the polar component, ${\gamma}$s$\^$p/ and the dispersion component, ${\gamma}$s$\^$d/. Furthermore, the data was interpreted for acid part, ${\gamma}$s$\^$+/ and base part, ${\gamma}$s$\^$$\square$/ of surface free energy. (omitted)

  • PDF

The Tangential Projection Method for Checking Existence and Nonexistence of Radius Groove Penetration of Screw after Distal Radius Fracture Operation Used the T-type Plate (T형 금속판을 이용한 요골 원위부 골절 수술 후 나사못의 요골구 관통 유무를 확인하기 위한 접선방향 촬영법)

  • Seo, Sun-Youl;Hong, Ki-Jang;Han, Man-Seok;Kim, Yong-Kyun
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.335-340
    • /
    • 2010
  • This paper is about a projection method to check existence of radius groove penetration of screw after distal radius fracture operation using the T-type plate. Angle of Radius groove was analyzed by fifty one CT images that contains patients' wrist and twenty cases of radius specimens. After making radius phantom by plaster, we set the screw so that it penetrated 2.4 mm depth of radius groove. Then, we projected the phantom by X-ray in change of the elevation and supination angle of distal radius by 5 degree interval on 0~30 degree. The average value of groove angle in the wrist CT images was 14.4 degree and the radius specimens was 16.3 degree. Screws penetrating radius groove of the phantom have different lengths according to elevation angle and supination angle. Consequently, in order to confirm existence and nonexistence of radius groove penetration of the screw in tangential projection after distal radius fracture operation using the T-type plate, we recommend 5 degree of elevation angle and 20 degree of supination angle.

Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector (수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교)

  • Gyuhan Bae;Juwan Lim;Jaehyun Lee;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.