• Title/Summary/Keyword: pendimethalin degradation

Search Result 4, Processing Time 0.02 seconds

Enhancement of Pendimethalin Degradation Activity in Bacillus sp. MS202 using Gamma Radiation

  • Lee Young-Keun;Chang Hwa-Hyoung;Lee Ho-Jin;Park Heesoon;Lee Kyung Hee;Joe Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.405-408
    • /
    • 2005
  • To induce the enhanced mutants of dinitroaniline herbicide pendimethalin degrading bacterium, Bacillus sp. MS202 was irradiated with gamma radiation at the dose of $LD_{99}$ (3.35 kGy). Three enhanced mutants (MS202m7, MS202m14, MS202m18) were isolated from the candidates by the generation - isolation method. Clear zone formation and the GC analysis confirmed that the degrading activity of each enhanced mutant (MS202m7, MS202m14, MS202m18), the formation of pendimethalin metabolite, increased by $11\%,\;45\%,\;and\;32\%$ than a wild type, respectively. It suggested that these mutants induced by gamma radiation could be useful for the application of pesticide degradation.

Partial Reduction of Dinitroaniline Herbicide Pendimethalin by Bacillus sp. MS202 (Bacillus sp. MS202에 의한 Dinitroaniline계 제초제인 Pendimethalin의 부분환원)

  • Lee, Young-Keun;Chang, Hwa-Hyoung;Jang, Yu-Sin;Hyung, Seok-Won;Chung, Hye-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.197-202
    • /
    • 2004
  • The persistence of pendimethalin in soil and ground water has an injurious effect on ecosystem. Pendimethalin-degrading bacterium was isolated from Masan, Gyeongnam province and temporarily identified as Bacillus sp. MS202 by the analysis of API CHB50, kit, FAME, and 16S rDNA sequence. from the analysis of pnedimethalin metabolite using TLC, GC, and GC-MS, we found that the degradation of pendimethalin by Bacillus sp. MS202 did not result in the dealkylated form, but the formation of the reduced compound, 6-amino-2-nitro-N(1-ethylpropyl)-3,4-xylidine or 2- amino-6-nitro-N(1-ethylpropyl)-3,4-xylidine.

Studies on Persistence of Pesticides in Soils and Crops under Polyethylene Film Mulching Culture;IV. Persistence of Herbicides Alachlor, Pendimethalin and Diphenamid (폴리에틸렌 멀칭재배시(栽培時) 농약(農藥)의 토양(土壤) 및 작물체중(作物體中) 잔류(殘留)에 관한 연구(硏究);제(第)4보(報) 제초제(除草劑) Alachlor, Pendimethalin, Diphenamid의 잔류성(殘留性))

  • Ryang, Hwan-Seung;Moon, Young-Hee;Kim, Nak-Eung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.14-20
    • /
    • 1988
  • The effect of polyethylene film(P.E.) mulching on the degradation of alachlor(N-methoxymethyl-2, 6-diethyl ${\alpha}-chloroacetoanilide$), pendimethalin(3, 4-dimethyl-2, 6-dinitro-N-l-ethylpropylanilide) and diphenamid(N,N-dimethyl-2, 2-diphenylacetamide) in red pepper, peanut, and sesame fields was investigated. In soils under the non-mulching condition the half-lives of alachlor, pendimethalin and diphenamid were 3, 37 and $24{\sim}46$ days, respectively. However, the half-lives of those under the P.E. mulching condition were longer than under the non-mulching condition. The differences in the half-lives between P.E. mulching and non-mulching conditions were about 30 days for pendimethalin and from 20 to 90 days for diphenamid. However, the half-life of alachlor was hardly affected by P.E. mulching. Pendimethalin and alachlor were not detected in the harvasted red peppers, peanuts and sesame under P.E. mulching and non-mulching conditions. But, the residue of diphenamid in peanuts was 0. 147 ppm under the P.E. mulching condition and 0.071 ppm under the non-mulching condition, and the residue of diphenamid in sesame was 0.022 ppm under the P.E. mulching condition and 0.129 ppm under the non-mulching condition. The amounts, however, were below the tolerance limits for pesticide residue.

  • PDF

Pesticide Degradation Activity of Several Isolates of Soil Bacteria and Their Identification (토양에서 분리한 수종 세균의 농약분해력 검정 및 동정)

  • Park, Kyung-Hun;Lee, Young-Kee;Lee, Su-Heon;Park, Byung-Jun;Kim, Chan-Sub;Choi, Ju-Hyeon;Uhm, Jae-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.138-148
    • /
    • 2006
  • Two bacteria were isolated from the continuously pesticide-used soil under plastic film house and upland condition. The degradation test of several pesticides by the selected bacteria, B59 and B71, were conducted. The degradation rates for 6 pesticides, procymidone, chlorothalonil, ethoprophos parathior, alachlor and pendimethalin, in medium by the isolates were 21.1% to 53.2% higher than non-inoculated medium. Under shaking culture condition, 90% to 95% of procymidone was degraded after 21 days treatment. Parathion was degraded in the range of 60% to 100% by B71 and B59, respectively. Otherwise 70% of alachlor was degraded by the two isolated bacteria during same period. The pH was not significantly affected for degradation of pesticides. The bacterial strains, B59 and B71 was identified as Acinetobacter sp. and as Pseudomonas sp. based on morphological, biochemical and physiological characteristics, and identity and similarity of automatic identification system, Biolog and MIDI.