• 제목/요약/키워드: pem

Search Result 501, Processing Time 0.025 seconds

Simulation of governing equations for direct methanol fuel cell(DMFC) using FEMLAB (FEMLAB를 이용한 직접메탄올 연료전지(DMFC) 지배방정식의 전산모사)

  • Park, Tae-Hyeon;Kim, In-Ho
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2004
  • Direct methanol fuel cell(DMFC) with proton exchange membrane (PEM) has advantages over the conventional power source (e.g. vehicle). DMFC, however, has a problem to be solved such as methanol crossover, high anodic overpotential and limiting current density, etc. The physicochemical phenomena in DMFC can be described by coupled PDEs (partial differential equations), which can be solved by a PDE solver. In this paper, we utilized a commercial software FEMLAB to solve the PDEs. The FEMLAB is one of the software programs available which are developed as a solver for building physics problems based on PDEs and is designed to simulate systems of coupled PDEs which may be 1D, 2D, 3D, non-liner and time dependent. We performed simulation using the Tafel equation as an electrochemical reaction model to analyze methanol concentration profile in DMFC system. We confirm that the rapid decrease of methanol concentration at anodic catalyst layer with the increase of the current density is a main reason of the low performance in DMFC through simulation results.

  • PDF

Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis (수전해 반응에 의한 고분자전해질 연료전지 전극과 막의 열화)

  • Jeong, Jae-Hyeun;Shin, Eun-Kyung;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.695-700
    • /
    • 2014
  • Proton Exchange Membrane Fuel Cells (PEMFC) can generate hydrogen and oxygen from water by electrolysis. But the electrode and polymer electrolyte membrane degrade rapidly during PEM water electrolysis because of high operation voltage over 1.7V. In order to reduce the rate of anode electrode degradation, unsupported $IrO_2$ catalyst was used generally. In this study, Pt/C catalyst for PEMFC was used as a water electrolysis catalyst, and then the degradation of catalyst and membrane were analysed. After water electrolysis reaction in the voltage range from 1.8V to 2.0V, I-V curves, impedance spectra, cyclic voltammograms and linear sweep voltammetry (LSV) were measured at PEMFC operation condition. The degradation rate of electrode and membrane increased as the voltage of water electrolysis increased. The hydrogen yield was 88 % during water electrolysis for 1 min at 2.0V, the performance at 0.6V decreased to 49% due to degradation of membrane and electrode assembly.

The Electrochemical Characteristics of MEA with Pt/Cross-Linked SPEEK-HPA Composite Membranes/Pt-Ru for Water Electrolysis (수전해용 Pt/공유가교 SPEEK-HPA 복합막/Pt-Ru MEA의 전기화학적 특성)

  • Hwang, Yong-Koo;Woo, Je-Young;Lee, Kwang-Mun;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • The e1ectrocatalytic properties of heteropolyacids(HPAs) entrapped in covalently cross-linked sulfonated polyetheretherketone(CL-SPEEK/HPA) membranes have been studied for water electrolysis. The HPAs, including tungstophosphoric acid(TPA), molybdophosphoric acid(MoPA), and tungstosilicic acid(TSiA) were used as additives in the composite membranes. The MEA was prepared by a non-equilibrium impregnation-reduction(I-R) method, using reducing agent, sodium borohydride(NaBH4) and tetraamineplatinum(II) chloride(pt(NH$_3$)$_4$Cl$_2$). The electrocatalytic properties of composite membranes such as the cell voltage were in the order of magnitude CL-SPEEKlMoPA40 (wt%) > /TPA30 > /TSiA40. In the optimum cell applications for water electrolysis, the cell voltage of PtlPEM/Pt-Ru MEA with CL-SPEEKlTPA30 membrane was 1.75 V at 80$^{\circ}$C and I A/cm$^2$ and this voltage carried lower than that of 1.81 V of Nafion 117. Consequently, in regards of electrochemical and mechanical characteristics and oxidation durability, the newly developed CL-SPEEKITPA30 composite membrane exhibited a better performance than the others, but CLSPEEKlMoPA40 showed the best electrocatalytic activity (1.71 Vat 80$^{\circ}$C and 1 A/cm$^2$) among the composite membranes.

Effect of Catholyte to Anolyte Amount Ratio on the Electrodialysis Cell Performance for HI Concentration (Anolyte와 Catholyte의 비율에 따른 HI 농축 전기투석 셀의 성능변화)

  • Kim, Chang-Hee;Cho, Won-Chul;Kang, Kyoung-Soo;Park, Chu-Sik;Bae, Ki-Kwang
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.507-512
    • /
    • 2010
  • The effect of catholyte to anolyte amount ratio on the electrodialysis cell performance for HI concentration was investigated. For this purpose, the electrodialysis cell was assembled with Nafion 117 as PEM membrane and activated carbon fiber cloth as electrodes. The initial amount of catholyte was 310 g and that of anolyte varied from 1 to 3 of amount ratio. The calculated electro motive force (EMF) increased with time and the increment enhanced as the amount ratio of catholyte to anolyte decreased. The mole ratios of HI to $H_2O$ (HI molarity) in catholyte were almost the same and exceeded pseudo-azeotropic composition for all amount ratios after 2 h operation. The HI molarity continuously increased with time for 10 h operation. The mole ratio of $I_2$ to HI decreased in catholyte but increased in anolyte. The increment of mole ratio of $I_2$ to HI in anolyte rose as the amount ratio of catholyte to anolyte decreased. In case of 1:1 amount ratio, the cell operation was stopped for the safety at approximately 6 h operation, since the mole ratio of $I_2$ to HI reached solubility limit. The cell voltage of the electrodialysis cell increased with time and the rate of increase was high at low amount ratio. This suggests that the amount ratio of catholyte to anolyte not only crucially influences the cell voltage, but also cell operation condition.

Development of a MEA Made by Decal Method in PEM Fuel Cells (데칼법을 이용한 연속 제조 공정에서의 고분자 전해질 연료전지용 전극 개발)

  • Yim, Sung-Dae;Park, Seok-Hee;Yoon, Young-Gi;Yang, Tae-Hyun;Kim, Chang-Soo
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cells (PEMFCs) have been extensively studied to improve their initial performance as well as their durability and to facilitate the commercialization of fuel cell technology. To improve the MEA performance, particularly at low Pt loadings, many approaches have been made. In the present study, MEA performance improvement was performed by adding $TiO_2$ particles into the catalyst layer of MEA. Most of previous studies have focused on the MEA performance enhancement under low humidity conditions by adding metal oxides into the catalyst layer mainly due to the water keeping ability of those metal oxides particles such as $Al_2O_3$, $SiO_2$ and zeolites. However, this study mainly focused on the improvement of MEA performance under fully humidified normal conditions. In this study, the MEA was prepared by decal method aiming for a continuous MEA fabrication process. The decal process can make very thin and uniform catalyst layer on the surface of electrolyte membrane resulting in very low interfacial resistance between catalyst layer and the membrane surface and uniform electrode structure in the MEA. It was found that the addition of $TiO_2$ particles into the catalyst layer made by decal method can minimize water flooding in the catalyst layer, resulting in the improvement of MEA performance.

Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction (연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구)

  • Yun, Sungho;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.503-511
    • /
    • 2013
  • The humidifying supply gas is important in terms of the performance efficiency and membrane life improvement of a PEM fuel cell. A planar membrane humidifier is classified as a cross-flow and counter-flow type depending on the flow direction, and heat and mass transfer occur between the plate and the membrane. In this study, the changes in heat and mass transfer for various inlet temperatures and flow rates are compared according to the flow direction by using the sensible and latent ${\varepsilon}$-NTU method. The obtained results indicate that the counter flow shows higher heat and mass transfer performance than the cross flow at a low flow rate, and the difference in performance decreases as the flow rate increases. Furthermore, changes in the mass transfer performance decrease considerably with a nonlinear increase in the inlet temperature, and variations of the heat transfer performance are small.

Effect of stack configuration on the performance of 10W PEMFC stack (10W급 고분자 전해질 연료전지 스택의 구조적 차이에 다른 운전 특성 비교)

  • Yim, Sung-Dae;Kim, Byung-Ju;Sohn, Young-Jun;Yoon, Young-Gi;Yang, Tae-Hyun;Kim, Chang-Soo;Kim, Young-Chai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.286-286
    • /
    • 2009
  • A small PEM fuel cell has two different stack configurations such as active and passive stacks. The active stack has a distintion of high power density although it makes system complex by using alr blower and related BOPs resulting in large system volume. On the contrary, passive stack has an advantage of compact system because it doesn't need air supplying devices although it reveals relatively low stack power density. In this study we fabricated two 10W PEMFC stacks with different stack configurations, active and passive stacks, and tested their performance and stability. The active stack consists of 13cells with an active area of $5cm^2$. The passive stack has 12cells with an active area of $16cm^2$. When we compared the stack performance of those stacks, the active stack showed higher power density compared to the passive stack, particularly at high voltage regions. However, at low voltage and high current regions, the passive stack performance was comparable to the active stack. The stack stability was largely dependent on the fuel humidity, particularly for active stack. At low humidity conditions, the active stack performance was decreased continuously and the cell voltage distribution was not uniform showing seriously low cell voltage at center cells mainly due to the cell drying. The passive stack showed relatively stable behavior at low humidity and the stack performance was largely dependent on the atmospheric conditions.

  • PDF

Development of a Durable Startup Procedure for PEMFCs (고분자전해질 연료전지 내구성 향상을 위한 시동 기술 개발에 관한 연구)

  • Kim, Jae-Hong;Jo, Yoo-Yeon;Jang, Jong-Hyun;Kim, Hyung-Juhn;Lim, Tae-Hoon;Oh, In-Hwan;Cho, Eun-Ae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.288-294
    • /
    • 2009
  • Various polymer electrolyte membrane fuel cell (PEMFC) startup procedures were tested to explore possible techniques for reducing performance decay and improving durability during repeated startup-shutdown cycles. The effects of applying a dummy load, which prevents cell reversal by consuming the air at the cathode, on the degradation of a membrane electrode assembly (MEA) were investigated via single cell experiments. The electrochemical results showed that application of a dummy load during the startup procedure significantly reduced the performance decay, the decrease in the electrochemically active surface area (EAS), and the increase in the charge transfer resistance ($R_{ct}$), which resulted in a dramatic improvement in durability. After 1200 startup-shutdown cycles, post-mortem analyses were carried out to investigate the degradation mechanisms via various physicochemical methods including FESEM, an on-line $CO_2$ analysis, EPMA, XRD, FETEM, SAED, FTIR. After 1200 startup-shutdown cycles, severe Pt particle sintering/agglomeration/dissolution and carbon corrosion were observed at the cathode catalyst layer when starting up a PEMFC without a dummy load, which significantly contributed to a loss of Pt surface area, and thus to cell performance degradation. However, applying a dummy load during the startup procedure remarkably mitigated such severe degradations, and should be used to increase the durability of MEAs in PEMFCs. Our results suggest that starting up PEMFCs while applying a dummy load is an effective method for mitigating performance degradation caused by reverse current under a repetition of unprotected startup cycles.

  • PDF

A Study on Flow Analysis of Centrifugal Pump for Exhaust Heat Recovery in Residential Fuel Cell Using A Commercial CFD code (상용 CFD 코드를 이용한 가정용 연료전지의 배열회수용 원심펌프 유동해석에 관한 연구)

  • Hwang, Seung-Sik;Jo, Ji-Hoon;Jin, Kyoung-Min;Lee, Song-Kyu;Shin, Dong-Hoon;Chung, Tae-Yong;Park, Chang-Kwon
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.224-230
    • /
    • 2011
  • For developing high performance fuel cell, peripheral devices and key components have to be studied in priority. In this study, centrifugal pump was studied for heat recovery. For PEM fuel cell system, a four-impeller centrifugal pump was designed, tested and compared with result of commercial product (IWAKI). In addition, effects of number of impeller were analyzed by CFD. The experiment and analysis were progressed in the same conditions. The results showed the quantitative difference under 30% between the numerical and the experimental pressure difference and mass flow rate.

Analysis on the Harmful Effect of Recycled Powder and Properties of Concrete Admixture by Recycled Powder (재생미분말의 유해성 분석 및 재생미분말을 혼입한 콘크리트의 특성)

  • Lee, Seung-Hwan;Choi, Ik-Chang;Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.289-295
    • /
    • 2008
  • The disposal of constructive waste is emerging as a national and social issue and the recycled powder generated by the production of reproductive aggregate is all being abolished or buried Analysis on the harmful effect of recycled powder indicated that because it contained massive cytotoxicity, it could derive secondary pollution to soil and subterranean water. This study set on an idea that one way to recycle recycled powder was to use it as a compound of concrete. In order to study that prospect, recycled powder, instead of cement, was mixed and a comparative analysis was conducted on the mechanical properties and workability. From experimental results, it was judged that application of recycled powder of cement replacement ratio below 20% was available with chemical admixtures. Also application of recycled powder was available to high strength concrete.

  • PDF