• 제목/요약/키워드: peeling strength

검색결과 65건 처리시간 0.074초

An Experimental Study to Prevent Debonding Failure of Full-Scale RC Beam Strengthened with Multi-Layer CFS

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.867-873
    • /
    • 2004
  • It has been known that debonding failures between CFS(Carbon Fiber Sheet) and concrete in the strengthened RC beams are initiated by the peeling of the sheets in the region of combined large moment and shear forces, being accompanied by the large shear deformation after flexural cracks. These shear deformation effects are seldom occurred in small-scale model tests, but debondings due to the large shear deformation effects are often observed in a full-scale model tests. The premature debonding failure of CFS, therefore, must be avoided to confirm the design strength of full-scale RC beam in strengthening designs. The reinforcing details, so- called 'U-Shape fiber wrap at mid-span' which wrapped the RC flexural members around the webs and tension face at critical section with CFS additionally, were proposed in this study to prevent the debonding of CFS. Other reinforcing detail, so called 'U-Shape fiber wrap at beam end' were included in this tests and comparisons were made between them.

Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures

  • Shaikh, F.U.A.;Taweel, M.
    • Advances in concrete construction
    • /
    • 제3권4호
    • /
    • pp.283-293
    • /
    • 2015
  • This paper presents the effects of elevated temperatures of $400^{\circ}C$ and $800^{\circ}C$ on the residual compressive strength and failure behaviour of fibre reinforced concretes and comparison is made with that of unreinforced control concrete. Two types of short fibres are used in this study e.g., steel and basalt fibres. The results show that the residual compressive strength capacity of steel fibre reinforced concrete is higher than unreinforced concrete at both elevated temperatures. The basalt fibre reinforced concrete, on the other hand, showed lower strength retention capacity than the control unreinforced concrete. However, the use of hybrid steel-basalt fibre reinforcement recovered the deficiency of basalt fibre reinforced concrete, but still slightly lower than the control and steel fibres reinforced concretes. The use of fibres reduces the spalling and explosive failure of steel, basalt and hybrid steel-basalt fibres reinforced concretes oppose to spalling in deeper regions of ordinary control concrete after exposure to above elevated temperatures. Microscopic observation of steel and basalt fibres surfaces after exposure to above elevated temperatures shows peeling of thin layer from steel surface at $800^{\circ}C$, whereas in the case of basalt fibre formation of Plagioclase mineral crystals on the surface are observed at elevated temperatures.

고온에 노출된 고강도 콘크리트 기둥의 폭렬해석 (Spalling Analysis of High-Strength Reinforced Concrete Columns under High Temperature)

  • 신성우;유석형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.193-200
    • /
    • 2007
  • 고온을 받는 고강도 콘크리트의 폭렬현상을 해석하기 위하여 온도해석, 열응력해석 및 수분이동 해석과 더불어 콘크리트 피복의 박리여부까지 고려하여야 하는 매우 복잡하고 어려운 해석과정이 요구되나 아직 이에 대한 연구가 거의 없는 실정이다. 본 연구에서는 수증기 압력을 온도와 피복두께의 함수로서 정의하고 또한 적합조건을 이용함으로써 피복콘크리트의 박리여부를 예측할 수 있는 실용적인 폭렬해석 알고리즘을 개발하였다. 폭렬해석결과 콘크리트 강도가 증가 할수록 PP섬유량이 적을수록 폭렬현상이 심하게 발생하였으며, 이는 기존의 실험결과와 유사한 경향을 나타내어 향후 고강도 콘크리트 내화설계를 위한 폭렬해석 시 유용하게 활용될 수 있을 것으로 기대된다.

고에너지 방사선이 탄소섬유/에폭시 복합재료의 기계적 물성에 미치는 영향 (Effects of High Energy Radiation on the Mechanical properties of Carbon Fiber/Dpoxy Composites)

  • 박종신
    • 유변학
    • /
    • 제3권1호
    • /
    • pp.22-29
    • /
    • 1991
  • In an effort to predict the long term durability of carbon fiber/epoxy composites in a space environ-ment interlaminar shear strength (ILSS) of the composites was measured as a function of 0.5 MeV electron radiation dosage. For the ILSS measurements a notch method (ASTM D3846) was used with and without side-supports. the supports were used to prevent peeling or bending during the test. The ILSS of both T300/ 5209 longitudinal composite system increases monotonically with radiation when the test is corried out without the support the ILSS of the composites increases initially but then decreases with further radiation. It is also observed that the ILSS of the unsupported case is much lower than that of the supported case. Measurement of epoxy modulus shows that the elastic modulus increases monotonically with radiation. But the breaking strength of the epoxy decreases with radiation. Electron Spectroscopy for Chemcal Analysis shows that the oxygen contents at both the pure epoxy surface and the composite fracture surface increase with radiation dose resulting in the increase of polarity at the interfacial region. This may be a supporting evidence for the increase in the ILSS of the composites.

  • PDF

군용 섬유제품에 적합한 파스너 테이프의 품질수준 연구 (A Study on Setting Quality Level of Fastener Tape for Military Textile Products)

  • 김성욱;이민희;홍성돈;이정순
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.162-170
    • /
    • 2017
  • Fastener tapes are widely used as auxiliary materials in textile products, and military textiles products are also applied. However, in Korea, the HL3-WA class of KS K 1309 was applied to military uniforms without consideration of the operating environment. Instead of adopting the standard of initial strength for Korean military uniforms, the US military applied the value after 3 washings, and presented different properties according to the items. Also in Japan, the standard was applied differently according to products in general clothing. The purpose of this study in to examine the quality level of fastener tapes used for military materials. The changes of tensile shear strength and peel strength of military and commercial fastener tape were studied after washing. As a result, the initial strength of the current military fastener tapes was higher than commercial one, but the strength retention rate was rapidly decreased as the number of washing. So it was confirmed that the decrease in strength was relatively lower than commercial one. It is necessary to improve the durability by adjusting the adhesive strength to suit the purpose of the product, and it is necessary to consider the priority of maintaining the durability according to the initial performance and repeated use according to the use environment, respectively.

탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향 (Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Adhesion Improvement for Copper Process in TFT-LCD

  • Tu, Kuo-Yuan;Tsai, Wen-Chin;Lai, Che-Yung;Gan, Feng-Yuan;Liau, Wei-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1640-1644
    • /
    • 2006
  • The first issue that should be overcome in copper process is its poor adhesive strength between pure copper film and glass substrate. In this study, defining the adhesive strength of pure copper film on various substrates and clarifying the key deposition parameters are presented for the investigation of copper process. First, using different kinds of surface plasma treatments were studied and the results showed that the adhesive strength was not improved even though the roughness of glass substrate surface was increased. Second, adding an adhesive layer between glass substrate and pure copper film was used to enhance the adhesion. Based on the data in the present paper, adopting copper alloy film as an adhesive layer can have capability preventing peeling problem in copper process. Besides, Cu/Cu alloy structure could be etched with the same etchant with better taper angle than the one with single layer of Cu. Unlike Cu/Mo structure, there is no residual problem for Cu/Cu alloy structure during etching process. Finally, this structure was examined in electrical test without significant difference in comparison with the conventional metal process.

  • PDF

Retrofitting of shear damaged RC beams using CFRP strips

  • Altin, Sinan;Anil, Ozgur;Toptas, Tolga;Kara, M. Emin
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.207-223
    • /
    • 2011
  • The results of an experimental investigation are presented in this paper for retrofitting of shear damaged reinforced concrete beams by using U shaped CFRP strips. The experimental program is consisted of seven shear deficient T cross sectioned 1/2 scale simply supported beam specimens. One beam was used as reference specimen, and the remaining six specimens were tested in two stages. At the first stage, specimens were shear damaged severely, and then were retrofitted by using CFRP strips with or without fan type anchorages. Finally, retrofitted beams were tested up to failure. Three different CFRP strip spacing were used such as 125 mm, 150 mm, and 200 mm. The effect of anchorages on shear strength and behavior of the retrofitted specimens is investigated. CFRP strips without anchorages improved the shear strength, but no flexural failure mode was observed. Specimens showed brittle shear failure due to peeling of CFRP strip from RC beam surface. Shear damaged specimens retrofitted with anchoraged CFRP strips showed improved shear strength and ductile flexural failure. Maximum strains at anchoraged strips were approximately 68% larger than that of strips without anchorages.

플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출 (Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method)

  • 연시모;박진호;이낙규;박석희;이혜진
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

출토 탄화 목제유물의 보존처리 : PEG법과 당알코올법 실험비교 (A Study on Conservation Treatment for Excavated Carbonization Wooden Object : Comparative Experiment on the PEG Method and Sugar Alcohol Method)

  • 이현혜
    • 보존과학회지
    • /
    • 제24권
    • /
    • pp.57-66
    • /
    • 2008
  • 출토 부분탄화 목제유물은 물성이 다른 부위가 공존하는 것에 의해 박리와 변형이 일어나기 쉬운 것으로 오래전부터 보고되어 왔지만, 실험연구 등을 통한 연구성과는 많지 않았다. 이번 실험에서는 당알코올법과 일반적으로 널리 사용되고 있는 친수성 수지인 Pdyethyleneglycol(PEG)법을 비교 대상 처리법으로 설정하였다. 중량변화율과 수축변화율, 전자현미경(SEM)관찰에 의한 목재조직의 변화양상을 검토한 결과 PEG4000법은 80%이상 농도까지 단계적 함침이 필요하며 Sugar Alcohol(S A)법은 40%농도 함침에서부터 안정적인 양상을 보여 단기간 함침의 가능성을 나타냈다. 본 연구에 사용한 판상 부분 탄화재의 변형은 주로 미탄화부의 수축에 의한 현상으로 생각되며 PEG4000법의 경우 최종 함침농도가 20%, 40%, 60%에서, S A법은 20%농도에 함침한 샘플에서 목재세포조직의 수축이 확인되었다.

  • PDF