• Title/Summary/Keyword: pedestrian detection

Search Result 187, Processing Time 0.036 seconds

A Study on H-CNN Based Pedestrian Detection Using LGP-FL and Hippocampal Structure (LGP-FL과 해마 구조를 이용한 H-CNN 기반 보행자 검출에 대한 연구)

  • Park, Su-Bin;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.75-83
    • /
    • 2018
  • Recently, autonomous vehicles have been actively studied. Pedestrian detection and recognition technology is important in autonomous vehicles. Pedestrian detection using CNN(Convolutional Neural Netwrok), which is mainly used recently, generally shows good performance, but there is a performance degradation depending on the environment of the image. In this paper, we propose a pedestrian detection system applying long-term memory structure of hippocampal neural network based on CNN network with LGP-FL (Local Gradient Pattern-Feature Layer) added. First, change the input image to a size of $227{\times}227$. Then, the feature is extracted through a total of 5 layers of convolution layer. In the process, LGP-FL adds the LGP feature pattern and stores the high-frequency pattern in the long-term memory. In the detection process, it is possible to detect the pedestrian more accurately by detecting using the LGP feature pattern information robust to brightness and color change. A comparison of the existing methods and the proposed method confirmed the increase of detection rate of about 1~4%.

A Tracking-by-Detection System for Pedestrian Tracking Using Deep Learning Technique and Color Information

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.1017-1028
    • /
    • 2019
  • Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.

Pedestrian Recognition of Crosswalks Using Foot Estimation Techniques Based on HigherHRNet (HigherHRNet 기반의 발추정 기법을 통한 횡단보도 보행자 인식)

  • Jung, Kyung-Min;Han, Joo-Hoon;Lee, Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.171-177
    • /
    • 2021
  • It is difficult to accurately extract features of pedestrian because the pedestrian is photographed at a crosswalk using a camera positioned higher than the pedestrian. In addition, it is more difficult to extract features when a part of the pedestrian's body is covered by an umbrella or parasol or when the pedestrian is holding an object. Representative methods to solve this problem include Object Detection, Instance Segmentation, and Pose Estimation. Among them, this study intends to use the Pose Estimation method. In particular, we intend to increase the recognition rate of pedestrians in crosswalks by maintaining the image resolution through HigherHRNet and applying the foot estimation technique. Finally, we show the superiority of the proposed method by applying and analyzing several data sets covered by body parts to the existing method and the proposed method.

A Speed-up Method of Pedestrian Detection in Realtime Image (실시간 영상에서의 보행자 검출 고속화 방법)

  • Lee, Yun-Gu;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2015
  • In this paper, we propose a method for pedestrian detection in real time video and reducing the calculation time of the HOG features for pedestrian detection. When the pedestrian is detected in real-time image, the next frame is detected by using a previously detected region information. In addition, we used a PSO to detect a pedestrian may appear in a region other than a pedestrian is detected quickly. the performance was measured for MIT, INRIA dataset, showed a performance increase of about 82% than the conventional method.

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment (제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.293-297
    • /
    • 2007
  • This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

  • PDF

Scale-aware Faster R-CNN for Caltech Pedestrian Detection (Caltech 보행자 감지를 위한 Scale-aware Faster R-CNN)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Jo, Geun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.506-509
    • /
    • 2016
  • We present real-time pedestrian detection that exploit accuracy of Faster R-CNN network. Faster R-CNN has shown to success at PASCAL VOC multi-object detection tasks, and their ability to operate on raw pixel input without the need to design special features is very engaging. Therefore, in this work we apply and adjust Faster R-CNN to single object detection, which is pedestrian detection. The drawback of Faster R-CNN is its failure when object size is small. Previously, small sized object problem was solved by Scale-aware Network. We incorporate Scale-aware Network to Faster R-CNN. This made our method Scale-aware Faster R-CNN (DF R-CNN) that is both fast and very accurate. We separated Faster R-CNN networks into two sub-network, that is one for large-size objects and another one for small-size objects. The resulting approach achieves a 28.3% average miss rate on the Caltech Pedestrian detection benchmark, which is competitive with the other best reported results.

A study on the detection of pedestrians in crosswalks using multi-spectrum (다중스펙트럼을 이용한 횡단보도 보행자 검지에 관한 연구)

  • kim, Junghun;Choi, Doo-Hyun;Lee, JongSun;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • The use of multi-spectral cameras is essential for day and night pedestrian detection. In this paper, a color camera and a thermal imaging infrared camera were used to detect pedestrians near a crosswalk for 24 hours at an intersection with a high risk of traffic accidents. For pedestrian detection, the YOLOv5 object detector was used, and the detection performance was improved by using color images and thermal images at the same time. The proposed system showed a high performance of 0.940 mAP in the day/night multi-spectral (color and thermal image) pedestrian dataset obtained from the actual crosswalk site.

Pedestrian Counting System based on Average Filter Tracking for Measuring Advertisement Effectiveness of Digital Signage (디지털 사이니지의 광고효과 측정을 위한 평균 필터 추적 기반 유동인구 수 측정 시스템)

  • Kim, Kiyong;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.493-505
    • /
    • 2016
  • Among modern computer vision and video surveillance systems, the pedestrian counting system is a one of important systems in terms of security, scheduling and advertising. In the field of, pedestrian counting remains a variety of challenges such as changes in illumination, partial occlusion, overlap and people detection. During pedestrian counting process, the biggest problem is occlusion effect in crowded environment. Occlusion and overlap must be resolved for accurate people counting. In this paper, we propose a novel pedestrian counting system which improves existing pedestrian tracking method. Unlike existing pedestrian tracking method, proposed method shows that average filter tracking method can improve tracking performance. Also proposed method improves tracking performance through frame compensation and outlier removal. At the same time, we keep various information of tracking objects. The proposed method improves counting accuracy and reduces error rate about S6 dataset and S7 dataset. Also our system provides real time detection at the rate of 80 fps.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Pedestrian Detection using HOG Feature and Multi-Frame Operation (HOG 특징과 다중 프레임 연산을 이용한 보행자 탐지)

  • Seo, Chang-jin;Ji, Hong-il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.193-198
    • /
    • 2015
  • A large number of vision applications rely on matching keypoints across images. Pedestrian detection is under constant pressure to increase both its quality and speed. Such progress allows for new application. A higher speed enables its inclusion into large systems with extensive subsequent processing, and its deployment in computationally constrained scenarios. In this paper, we focus on improving the speed of pedestrian detection using HOG(histogram of oriented gradient) and multi frame operation which is robust to illumination changes in cluttering images. The result of our simulation indicates that the detection rate and speed of the proposed method is much faster than that of conventional HOG and differential images.