• Title/Summary/Keyword: peakons

Search Result 2, Processing Time 0.016 seconds

STABILITY IN THE ENERGY SPACE OF THE SUM OF N PEAKONS FOR A CAMASSA-HOLM-TYPE EQUATION WITH QUARTIC NONLINEARITY

  • Liu, Xingxing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.703-728
    • /
    • 2019
  • Considered herein is the orbital stability in the energy space $H^1({\mathbb{R}})$ of a decoupled sum of N peakons for a Camassa-Holm-type equation with quartic nonlinearity, which admits single peakon and multi-peakons. Based on our obtained result of the stability of a single peakon, then combining modulation argument with monotonicity of local energy $H^1$-norm, we get the stability of the sum of N peakons.

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.