• Title/Summary/Keyword: peak wind pressure

Search Result 113, Processing Time 0.029 seconds

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.

Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds

  • Ashrafi, Arash;Chowdhury, Jubayer;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.395-405
    • /
    • 2022
  • Tornado-induced damages to high-rise buildings and low-rise buildings are quite different in nature. Tornado losses to high-rise buildings are generally associated with building envelope failures while tornado-induced damages to low-rise buildings are usually associated with structural or large component failures such as complete collapses, or roofs being torn off. While studies of tornado-induced structural damages tend to focus mainly on low-rise residential buildings, transmission towers, or nuclear power plants, the current rapid expansion of city centers and development of large-scale building complexes increases the risk of tornadoes impacting tall buildings. It is, therefore, important to determine how tornado-induced load affects tall buildings compared with those based on synoptic boundary layer winds. The present study applies an experimentally simulated tornado wind field to the Commonwealth Advisory Aeronautical Research Council (CAARC) building and estimates and compares its pressure coefficient effects against the Atmospheric Boundary Layer (ABL) flow field. Simulations are performed at the Wind Engineering, Energy and Environment (WindEEE) Dome which is capable of generating both ABL and tornadic winds. A model of the CAARC building at a scale of 1:200 for both ABL and tornado flows was built and equipped with pressure taps. Mean and peak surface pressures for TLV flow are reported and compared with the ABL induced wind for different time-averaging. By following a compatible definition of the pressure coefficients for TLV and ABL fields, the resulting TLV pressure field presents a similar trend to the ABL case. Also, the results show that, for the high-rise building model, the mean and 3-sec peak pressures are larger for the ABL case compared to the TLV case. These results provide a way forward for the code implementation of tornado-induced pressures on high-rise buildings.

A Continuous Wavelet Study on Approach Wind and Building Pressure (접근풍속과 건물 변동풍압력에 대한 연속파동변화법의 적용)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.89-97
    • /
    • 2005
  • Application of proper orthogonal decomposition (POD) and continuous wavelet transform (CWT) is introduced to study wind speed and building roof pressures of flow separation region. In this study, a detailed analysis of the approach wind flow, wind-induced building pressure and the relation between the two fields was carried out using the POD technique and CWT analysis. The results show potential of the application of POD and CWT in characterization of spatio-temporal and spectral properties of the approach wind and its induced dynamic pressure events. Some of findings resulting from the application of this analysis can be summarized as follows: (1) The POD first principal coordinate of the roof pressure in the separated shear layer is closely correlated with the longitudinal component of oncoming flow. (2) The CWT analysis suggests that the extreme peak pressure in the separated shear layer is due to condensed large-scale eddy motions.

  • PDF

Peak Pressures Acting on Tall Buildings with Various Configurations

  • Bandi, Eswara Kumar;Tanaka, Hideyuki;Kim, Yong Chul;Ohtake, Kazuo;Yoshida, Akihito;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.229-244
    • /
    • 2013
  • Twenty six pressure models of high rise buildings with various cross-sections including twisted models were tested in a boundary layer wind tunnel. The cross-sections were triangular, square, pentagon, hexagon, octagon, dodecagon, circular, and clover. This study investigates variations in peak pressures, and effects of various cross-sections and twist angles on peak pressures. To study the effects of various configurations and twist angles on peak pressures in detail, maximum positive and minimum negative peak pressures at each measurement point of the building for all wind directions are presented and discussed. The results show that peak pressures greatly depend on building cross-section and twist angle.

Analysis of the Wind Pressure Coefficient Characteristic of Livestock Shed Roof Surface according to the Opening of Side Walls (측벽 개방유무에 따른 축사지붕면의 풍압계수 특성분석)

  • You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • Livestock buildings are rural facilities as vulnerable to natural disasters as vinyl houses. Many of livestock buildings have a roof but without side walls. The roof of such structures is easily blown away by a typhoon and this results in a heavy loss. Therefore, farmers install winch curtains on the sides to prevent damages caused by typhoons. This study purposed to examine the distribution of wind pressure coefficient among different positions of livestock shed roof according to the opening of side walls. It was found that according to the distribution of peak external pressure coefficient on the roof surface of livestock shed, the wind blowing at wind angle $0^{\circ}$ was disadvantageous to roof surface regardless of the presence of side walls. However, it was confirmed that the peak external pressure coefficient was affected by wind angle and the length of eave depending on the presence of side walls.

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

Analysis of External Peak Pressure Coefficients for Cladding in Elliptical Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 타원형 개폐식 돔 지붕의 외장재용 풍압 계수 분석)

  • Lee, Jong-Ho;Kim, Yong-Chul;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This study investigates the wind pressure characteristics of elliptical plan retractable dome roof. Wind tunnel experiments were performed on spherical dome roofs with varying wall height-span ratios (0.1~0.5) and opening ratios (0%, 10%, 30% and 50%), similar to previous studies of cirular dome roofs. In previous study, wind pressure coefficients for open dome roofs have been proposed since there are no wind load criteria for open roofs. However, in the case of Eeliptical plan retractable dome roof, the wind pressure coefficient may be largely different due to the presence of the longitudinal direction and transverse direction. The analysis results leads to the exceeding of maximum and minimum wind pressure coefficients KBC2016 code.

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

Field studies of wind induced internal pressure in a warehouse with a dominant opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.117-136
    • /
    • 2013
  • A field study of wind-induced internal pressures in a flexible and porous industrial warehouse with a single dominant opening, of various sizes for a range of moderate wind speeds and directions, is reported in this paper. Comparatively weak resonance of internal pressure for oblique windward opening situations, and hardly discernible at other wind directions, is attributed to the inherent leakage and flexibility in the envelope of the building in addition to the moderate wind speeds encountered during the tests. The measured internal pressures agree well with the theoretical predictions obtained by numerically simulating the analytical model of internal pressure for a porous and flexible building with a dominant opening. Ratios of the RMS and peak internal to opening external pressures obtained in the study are presented in a non-dimensional format along with other published full scale measurements and compared with the non-dimensional design equation proposed in recent literature.

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.