• Title/Summary/Keyword: peak support pressure

Search Result 25, Processing Time 0.022 seconds

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.

The Influence of Auditory-Feedback Device Using Wearable Air-Pressure Insole on Spatiotemporal Gait Symmetry in Chronic Hemplegia

  • Heo, Ji-Hun;Song, Changho;Jung, Sangwoo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.311-319
    • /
    • 2021
  • Objective: To investigate the effect of emphasized initial contact by using a wearable air-pressure insole to provide auditory-feedback with variations of maximum peak pressure (MPP) of the affected side on spatiotemporal gait parameters and gait symmetry of stroke patients Design: A cross-sectional study Methods: Eighteen stroke patients participated in this study. All subjects walked five trials using an air-pressure insole that provides auditory feedback with different thresholds set on the insole. First, subjects walked without any auditory feedback. Then, the MPP threshold on the affected side was set from 70% and increase threshold by 10% after each trial until 100%. They walked three times or more on the gait analyzer for each trial, and the average values were measured. Before starting the experiment, subjects measured body weight, initial gait abilities and affected side MPP without auditory feedback. Results: Temporal and spatial variables were significantly increased in trials with auditory feedback from air-pressure insole except for non-paralyzed single support time and spatial gait symmetry compared to trials without auditory feedback(p<0.05). Among the four different thresholds, the walking speed, unaffected side single support time, affected and unaffected side stride, and affected side step length were greatest at 80% threshold of maximum peak, while affected single support time, temporal gait symmetry, and unaffected step length were greatest at the maximum peak of 100% threshold. Conclusions: These results indicate that auditory feedback gait using air-pressure insoles can be an effective way to improve walking speed, single support time, step length, stride, and temporal gait symmetry in stroke patients.

Comparison of plantar pressure and COP parameters in three types of arch support insole during stair descent in elderly with flatfoot (편평족 노인의 계단 하강 보행 시 아치 지지형 인솔 종류에 따른 족저압력 및 균형성 평가)

  • Han, Ki-Hoon;Bae, Kang-Ho;Jung, Ha-gon;Ha, Min-Sung;Choi, Do-Yeol;Lee, Joong-Sook;Yang, Jeong-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.948-955
    • /
    • 2018
  • The purpose of this study was to compare plantar pressure and COP parameters in three types of arch support insole during stair descent in elderly with flatfoot. A total of 14 women elderly were recruited for this study. Pedar-X was used to obtain plantar pressure(peak pressure, mean pressure, and contact area) and COP(distance, displacement, excursion) parameters. One-way ANOVAs were used to compare peak pressure, mean pressure, and contact area, distance of COP, displacement of COP, and excursion of COP. Among the plantar pressure parameters, significant(p<0.05) differences were observed in M3 for the peak pressure, M2, M3, and M4 for the mean pressure, and M2, M3, and M6 for the contact area. Among the COP parameters, distances of COP both in the mediolateral and anteroposterior axes revealed significant(p<0.05) differences. The larger peak pressure values of type A and B insoles were observed as compared to normal insole. The larger peak pressure and shorter COP distance values of type A and B insoles were observed as compared to normal insole.

Biomechanical Effectiveness of the Low-Dye Taping on Peak Plantar Pressure During Treadmill Walking Exercise in Subjects With Flexible Flatfoot

  • Lim, One-Bin;Kim, Jeong-Ah;Kwon, Oh-Yun;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.22 no.2
    • /
    • pp.41-51
    • /
    • 2015
  • The purposes of this study were 1) to determine the effects of low-dye taping on peak plantar pressure following treadmill walking exercise, 2) to determine whether the biomechanical effectiveness of low-dye taping in peak plantar pressure was still maintained following removal of the tape during treadmill walking, and 3) to determine the trend towards a medial-to-lateral shift in peak plantar pressure in the midfoot region before and after application of low-dye taping. Twenty subjects with flexible flatfoot were recruited using a navicular drop test. The peak plantar pressure data were recorded during five treadmill walking sessions: (1) un-taped, (2) baseline-taped, (3) after a 10-minute treadmill walking exercise, (4) after a 20-minute treadmill walking exercise, and (5) after removal of the taping. The foot was divided into six parts during the data analysis. One-way repeated measures analysis of variance was performed to investigate peak plantar pressure variations in the six foot parts in the five sessions. This study resulted in significantly increased medial forefoot peak plantar pressure compared to the un-taped condition (p=.017, post 10-minute treadmill walking exercise) and (p=.021, post 20-minute treadmill walking exercise). The peak plantar pressure in the lateral forefoot showed that there was a significant decrease after sessions of baseline-taped (p=.006) and 10-minute of treadmill walking exercise (p=.46) compared to the un-taped condition. The tape removal values were similar to the un-taped values in the five sessions. Thus, the findings of the current study may be helpful when researchers and clinicians estimate single taping effects or consider how frequently taping should be replaced for therapeutic purposes. Further studies are required to investigate the evidence in support of biomechanical effectiveness of low-dye taping in the midfoot region.

Determination of Minimal Pressure Support Level During Weaning from Pressure Support Ventilation (압력보조 환기법으로 기계호흡 이탈시 최소압력보조(Minimal Pressure Support) 수준의 결정)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Lim, Chae-Man;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.380-387
    • /
    • 1998
  • Background: Minimal pressure support(PSmin) is a level of pressure support which offset the imposed work of breathing(WOBimp) developed by endotracheal tube and ventilator circuits in pressure support ventilation While the lower applied level of pressure support compared to PSmin could induce respiratory muscle fatigue, the higher level than PSmin could keep respiratory muscle rest resulting in prolongation of weaning period during weaning from mechanical ventilation PSmin has been usually applied in the level of 5~10 cm$H_2O$, but the accurate level of PSmin is difficult to be determinated in individual cases. PSmin is known to be calculated by using the equation of "PSmin = peak inspiratory flow rate during spontaneus ventilation$\times$total ventilatory system resistance", but correlation of calculated PSmin and measured PSmin has not been known. The objects of this study were firstly to assess whether customarily applied pressure support level of 5~10 cm$H_2O$ would be appropriate to offset the imposed work of breathing among the patients under weaning process, and secondly to estimate the correlation between the measured PSmin and calculated PSmin. Method : 1) Measurement of PSmin : Intratracheal pressure changes were measured through Hi-Lo jet tracheal tube (8mm in diameter, Mallinckroft, USA) by using pulmonary monitor(CP-100 pulmonary monitor, Bicore, USA), and then pressure support level of mechanical ventilator were increased until WOBimp was reached to 0.01 J/L or less. Measured PSmin was defined as the lowest pressure to make WOBimp 0.01 J/L or less. 2) Calculation of PSmin : Peak airway pressure(Ppeak), plateau airway pressure(Pplat) and mean inspiratory flow rate of the subjects were measured on volume control mode of mechanical ventilation after sedation. Spontaneous peak inspiratory flow rates were measured on CPAP mode(O cm$H_2O$). Thereafter PSmin was calculated by using the equation "PSmin = peak inspiratory flow rate$\times$R, R = (Ppeak-Pplat)/mean inspiratory flow rate during volume control mode on mechanical ventilation". Results: Sixteen patients who were considered as the candidate for weaning from mechanical ventilation were included in the study. Mean age was 64(${\pm}14$) years, and the mean of total ventilation times was 9(${\pm}4$) days. All patients except one were males. The measured PSmin of the subjects ranged 4.0~12.5cm$H_2O$ in 14 patients. The mean level of PSmin was 7.6(${\pm}2.5\;cmH_2O$) in measured PSmin, 8.6 (${\pm}3.25\;cmH_2O$) in calculated PSmin Correlation between the measured PSmin and the calculated PSmin is significantly high(n=9, r=0.88, p=0.002). The calculated PSmin show a tendancy to be higher than the corresponding measured PSmin in 8 out of 9 subjects(p=0.09). The ratio of measured PSmin/calculated PSmin was 0.81(${\pm}0.05$). Conclusion: Minimal pressure support levels were different in individual cases in the range from 4 to 12.5 cm$H_2O$. Because the equation-driven calculated PSmin showed a good correlation with measured PSmin, the application of equation-driven PSmin would be then appropriate compared with conventional application of 5~10 cm$H_2O$ in patients under difficult weaning process with pressure support ventilation.

  • PDF

The Characteristics of Foot Pressure Distribution According to Walking Speeds of Normal Gait and Ground Inclinations (정상 보행의 속도와 경사에 따른 족저압 분포의 특성)

  • Hong, Wan-Sung;Kim, Gi-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.4
    • /
    • pp.29-37
    • /
    • 2004
  • Measurements of plantar pressure provide an indication of foot and ankle function during gait and other functional activities because the foot and ankle provide necessary support and flexibility for weight bearing and weight shifting while people are performing these activities. Plantar pressure is being increasingly used in both research and clinical practice to measure the effects of various footwear and physical therapy intervention. The influence of walking speed and ground inclination on plantar pressure parameters However has not been evaluated in detail. So, in this study to determine the effect of changes in walking speed and ground inclination on plantar pressure treadmills with different walking speeds and inclination were used. Plantar pressure parameters were measured with the Parotec system using the walking and running in 20 healthy participants(10 male, 10 female) aged $20{\sim}28$(mean 22.22, S.D.2.26 years) when slow walking and running. The result of this study with increased die walking speed, the peak pressure of 1st, 5th metatarsal head and total contact time and impulse total at the forefoot was affected by walking speed; however, die peak pressure, contact time and impulse total at the forefoot was not affected by ground inclination.

  • PDF

A Pressure Applied Low-Level Laser Probe to Enhance Laser Photon Density in Soft Tissue (생체조직내 레이저 광 밀도 향상을 위한 압력 인가형 저출력 레이저 프로브)

  • Yeo, Chang-Min;Park, Jung-Hwan;Son, Tae-Yoon;Lee, Yong-Heum;Jung, Byung-Jo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • Laser has been widely used in various fields of medicine. Recently, noninvasive low-level laser therapeutic medical devices have been introduced in market. However, low-level laser cannot deliver enough photon density to expect positive therapeutic results in deep tissue layer due to the light scattering property in tissue. In order to overcome the limitation, this study was aimed to develop a negative pressure applied low-level laser probe to optimize laser transmission pattern and therefore, to improve photon density in soft tissue. In order to evaluate the possibility of clinical application of the developed laser probe, ex-vivo experiments were performed with porcine skin samples and laser transmissions were quantitatively measured as a function of tissue compression. The laser probe has an air suction hole to apply negative pressure to skin, a transparent plastic body to observe variations of tissue, and a small metallic optical fiber guide to support the optical fiber when negative pressure was applied. By applying negative pressure to the laser probe, the porcine skin under the metallic optical fiber guide is compressed down and, at the same time, low-level laser is emitted into the skin. Finally, the diffusion images of laser in the sample were acquired by a CCD camera and analyzed. Compared to the peak intensity without the compression, the peak intensity of laser increased about $2{\sim}2.5$ times and FWHM decreased about $1.67{\sim}2.85$ times. In addition, the laser peak intensity was positively and linearly increased as a function of compression. In conclusion, we verified that the developed low-level laser probe can control the photon density in tissue by applying compression, and therefore, its potential for clinical applications.

Preliminary Study on the Comparison of Calcaneus Taping and Arch Taping Methods for Flexible Flatfoot Subjects

  • Jinteak Kim;Byeongsoo Kim;Jongduk Choi
    • Physical Therapy Korea
    • /
    • v.30 no.4
    • /
    • pp.281-287
    • /
    • 2023
  • Background: The flexible flatfoot is characterized by a flattening of the foot arch due to excessive bodyweight. The use of shoe insoles or taping methods has been identified as effective in realigning the navicular or calcaneus bones and addressing supination in pronated feet. Objects: This study aimed to analyze the difference between the arch taping attachment method, introduced in a previous study, and a novel taping method designed to provide support to the inner aspect of the heel bone in cases of flexible flatfoot. Methods: A navicular drop test was performed to discriminate flexible flatfoot. To analyze the differences in pressure distribution during walking for each taping method, the subjects underwent testing in the barefoot state with no attachments. The procedure included a sequence of arch taping and heel taping. Subsequent analysis of pressure distribution during walking utilized the GaitRite® system (GAITRite Gold, CIR Systems Inc.). Results: Arch taping and calcaneus taping significantly reduced the integrated pressure over time and peak pressure on the medial side of the midfoot for both feet compared to the barefoot state. Conclusion: The findings of this study suggest that supporting the inside of the heel through calcaneus taping, without direct stimulation to the longitudinal arch and navicular bone, is an effective intervention for flexible flatfoot.

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

A Comparative Study on the Effects of Three Types of Pillows on Head-neck Pressure Distribution and Cervical Spine Alignment

  • Kyeong-Ah Moon;Ji-Hyun Kim;Ye Jin Kim;Joo-Hee Park;Hye-Seon Jeon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2024
  • Background: Sleep accounts for approximately one-third of a person's lifetime. It is a relaxing activity that relieves mental and physical fatigue. Pillows of different sizes, shapes, and materials have been designed to improve sleep quality by achieving an optimal sleep posture. Objects: This study aimed to determine which pillow provides the most comfortable and supports the head and neck during sleep, which may enhance sleep quality. Methods: Twenty-eight healthy adults (19 males and 9 females) with an average age of 29 years participated in this cross-sectional study. This experiment was conducted while the participants laid down for 5 minutes in four different pillow conditions: (1) no pillow (NP), (2) neck support foam pillow (NSFP), (3) standard microfiber filled pillow (SFP), and (4) hybrid foam pillow (HFP). The head-neck peak pressure, cranio-vertebral angle in supine (CVAs), cranio-horizontal angle in supine (CHAs), chin-sternum distance (CSD), and muscle tone of sternocleidomastoid were analyzed using one-way repeated measures analysis of variance (ANOVA). The significance level was set at p < 0.05. Results: The head-neck peak pressure was the highest in the NSFP condition, followed by the NP, SFP, and HFP conditions. The CVAs, CHAs, and CSD of the SFP were lower than those of the other pillows. Muscle tone was the highest in the NP condition, followed by the of NSFP, HFP, and SFP conditions. The participants subjective comfort level in both the supine and side-lying postures was highest in the HFP condition, followed by the SFP and NSFP conditions. Conclusion: This study can be used to establish the importance of pillow selection for high-quality sleep. The results of this study, suggest that a hybrid pillow with a good supportive core and appropriate fluffiness can maintain comfort and correct cervical spine alignment during sleep.